



# Update on tests with passive strucutres on CHESS 2 chip

ATLAS Strip CMOS meeting, 20.12.2016

Bojan Hiti, Igor Mandić et al.

Jožef Stefan Institute, Experimental Particle Physics Department (F9)

Ljubljana, Slovenia

### Samples



Chips from wafer 1: standard AMS resistivity (20 Ohm-cm)

| Resistivity          | Wafer       | Wafers | Number       |  |
|----------------------|-------------|--------|--------------|--|
| $[\Omega\text{-cm}]$ | numbers cut |        | of cut chips |  |
| std                  | 1-6         | 1, 2   | 94           |  |
| 50-100               | 7-12        | 7, 8   | 97           |  |
| 200-300              | 13-18       | 13, 14 | 94           |  |
| 600-2000             | 19-24       | 19, 20 | 95           |  |

Neutron fluences 0e14, 1e14, 3e14, 5e14, 1e15, 2e15 neq/cm2

#### I-V characteristic





I-V measured on a TCT array (3 x 3 pixels, pixel size 630 x 40  $\mu$ m<sup>2</sup>)

## E-TCT Charge collection profiles W1





- Moderate charge collection width, but increases with irradiation
- Low resistivity → late acceptor removal

#### Neff vs. fluence





$$Width(V_{\text{bias}}) = w_0 + \sqrt{\frac{2\varepsilon\varepsilon_0}{e(N_{\text{eff}})}} V_{\text{bias}}$$

Extract value from fit

#### N<sub>eff</sub> vs. fluence



Fit: 
$$N_{\text{eff}} = N_{\text{eff0}} - N_{\text{c}} \cdot (1 - \exp(-c \cdot \Phi_{\text{eq}})) + g_{c} \cdot \Phi_{\text{eq}}$$

Radiation introduced deep acceptors



#### Neff vs. fluence



$$\left| N_{\text{eff}} = N_{\text{eff0}} - N_{c} \cdot (1 - \exp(-c \cdot \Phi_{\text{eq}})) + g_{c} \cdot \Phi_{\text{eq}} \right|$$



Removal at the highest resistivity substrate is completed below 1e14 neq/cm2 and was not observed in this study

should verify again

#### Acceptor removal constant vs. doping





| Chip    | ρ (Ohmcm) | c (1e-14 cm-2) | Neff/Neff_0 | g_c (cm-1)   |
|---------|-----------|----------------|-------------|--------------|
| HV2FEI4 | 10        | 0.6            | 1           | 0.02 (fixed) |
| CHESS1  | 20        | 0.4            | 1           | 0.01         |
| CHESS2  | 50        | 0.5            | 1           | 0.02 (fixed) |
| Xfab    | 100       | 1              | 1           | 0.043        |
| CHESS2  | 200       | 0.3            | 0.8         | 0.02 (fixed) |
| LF      | 2000      | 10             | 0.6         | 0.047        |

#### Sr90 measurements





Collected charge is less than expected from E-TCT measurements

## Sr90 Comparison for different substrates





CHESS1 vs. CHESS2: trend is similar, but numbers differ

#### Top TCT



- Charge from Sr90 measurements systematically only 60 % of that expected for the depletion depth measured by E-TCT
- Investigate with top TCT
  - IR light 980 nm, abs. depth 100  $\mu$ m  $\rightarrow$  no reflections from back plane



W19 5e14
Big array for Sr90
(1.2 mm x 1.2 mm)

Gaps between pixels due to metalization on top of the chip

But on the large scale intensity in central pixels less than on edges!

11

#### Top TCT 2



Difference in the collected charge indicates a larger depletion depth on the edges of the Sr 90 array.

Edge-like pixels also measured in Edge-TCT. This may be a reason for discrepancy between the measurements.



CCE at y=585 µm



#### Similar behavior observed also on the sample W19 3e14



#### Summary



- Completed measurements of charge collection on passive structures on CHESS 2
  - 4 wafer resistivities 20 2000 Ohm-cm, each wafer 6 neutron fluences up to 2e15 n/cm2
  - E-TCT and Sr90

#### • E-TCT:

- Behavior of different wafers as expected from previous studies with different substrates
- Acceptor removal plays a role in depleted depth after irradiation effects depending on initial resistivity
- Sr90
  - Collected charge greater at least 1000 electrons for any substrate and fluence
- Systematic discrepancy between E-TCT and Sr90 in collected vs. expected charge charge (40 %)
  - Indications that pixels in a large array collect less charge than pixels with only few neighbors
- Outlook: Tests with active analog structures



## **BACKUP**

#### Passive structures on CHESS2





**Red traces** - metalization







#### Depletion depth W19







$$Width(V_{\text{bias}}) = w_0 + \sqrt{\frac{2\varepsilon\varepsilon_0}{e_0 N_{\text{eff}}}} V_{\text{bias}}$$

 Sqrt functions falling monotonously with fluence

#### Sr90 charge



19



- TCT 1e14: depletion zone 120 um at 100 V
- We still collect less charge than expected (f.e. meas. 7000 e vs. 12000 e expected)
- Investigate with top TCT ?

#### Sr90 spectra W19





### Charge profiles W7, W13



21

• Edge-TCT charge collection profile across central pixel





• increase of width with fluence up to 1e15

#### W13 (200 $\Omega$ ·cm)



not much change of profile width with fluence

## REMINDER Depletion depth W7, W13



width of charge collection profile vs. bias

W7 (50  $\Omega$ ·cm)



W13 (200  $\Omega$ ·cm)



Fit: 
$$Width(V_{\text{bias}}) = w_0 + \sqrt{\frac{2\varepsilon\varepsilon_0}{e_0 N_{\text{eff}}} V_{\text{bias}}}$$

At  $\Phi = 0$ 

- W7:  $N_{eff} = 2.3e14 \text{ cm}^{-3}$   $\rightarrow$  56  $\Omega \cdot \text{cm}$
- W13:  $N_{eff} = 6.6e13 \text{ cm}^{-3}$
- **→** 200 Ω·cm

→ Good fit, good agreement with nominal resistivity

#### REMINDER Sr90 W7, W13







#### W13 (200 $\Omega$ ·cm)



- large drop of collected charge (delta ≈ 1300 el) after first irradiation step to 1e14 n/cm2
  - → reduced contribution from diffusion
- TCT measurements indicate depleted region > 50 μm
  - Expect > 5000 el. from drift
  - Measure 2000 el.

#### IV-curves wafer 13





No IV curves for wafer 7 due to a bug, but 0e14, 1e14, 1e15, 2e15 OK up to 120 V 5e14 up to 110 V, 3e14 at least up to 90 V

60

80

100

120

 $V_{\text{bias}}(V)$ 

40

20

#### High resistivity wafers



25

- After suggestion from Santa Cruz tried biasing the substrate from other pads:
  - a & d → breakdown at 18 V
  - a & b → breakdown at 18 V
  - c & d → breakdown at 1 V
  - c & b → breakdown at 1 V

Planning also to measure IV of irradiated devices on probe station to see if there is improvement after irradiation



a – LPA nwells

b – LPA substrate

c – Large Pad

nwells

d – Large Pad

substrate

#### Profiles W19 1e14





















#### Profiles W19 3e14





















#### Profiles W19 5e14





















#### Profiles W19 1e15





















#### Profiles W19 2e15



















