Toward a unified interpretation of quark and lepton mixing from flavor and CP symmetries

Gui-Jun Ding

Department of Modern Physics, University of Science and Technology of China

Based on arXiv:1704.xxxxx, in collaboration with Cai-Chang Li

Bethe Forum "Discrete Symmetries", 3rd to 7th April, 2017 Bethe Center for Theoretical Physics Bonn, Germany

CKM vs. PMNS

Are they related to masses? \bullet

Flavor mixing from flavor symmetry

The paradigm of flavor symmetry

[Froggatt, Nielsen, Nucl.Phys. B147 (1979) 277-298; Altarelli and Feruglio, Rev. Mod. Phys. 82, 2701 (2010); King and Luhn, Rept. Prog. Phys. 76, 056201 (2013); King, Merle, Morisi, Shimizu and Tanimoto, New J. Phys. 16, 045018 (2014)...]

Classification of U_{PMNS} from finite flavor symmetries

The PMNS matrix can take **17 discrete patterns or the trimaximal form** > Only **trimaximal** mixing can be compatible with data

$$U_{PMNS} = \frac{1}{\sqrt{3}} \begin{pmatrix} \sqrt{2}\cos\theta & 1 & -\sqrt{2}\sin\theta \\ -\sqrt{2}\cos(\theta - \pi/3) & 1 & \sqrt{2}\sin(\theta - \pi/3) \\ -\sqrt{2}\cos(\theta + \pi/3) & 1 & \sqrt{2}\sin(\theta + \pi/3) \end{pmatrix}$$

[Fonseca and Grimus, JHEP 1409, 033
(2014);
Holthausen,Lim,Lindner,Phys.Lett.
B721 (2013) 61-67 ;
Yao, Ding, Phys.Rev. D92 (2015) no.9,
096010]

4

• testable sum rules: $3\sin^2 \theta_{12} \cos^2 \theta_{13} = 1$, $\sin^2 \theta_{23} = \frac{1}{2} \pm \frac{1}{2} \tan \theta_{13} \sqrt{2 - \tan^2 \theta_{13}}$ $(\sin^2 \theta_{13})^{\text{bf}} \simeq 0.0218 \Rightarrow \sin^2 \theta_{12} \simeq 0.341$, $\sin^2 \theta_{23} \simeq 0.391$ or 0.609

•Dirac CP phase is conserved : $sin\delta=0$

➤Underlying flavor symmetry

$$G_f = \Delta(6n^2) \cong (Z_n \times Z_n) \rtimes S_3$$

or $G_f = D_{9n,3n}^{(1)} \cong (Z_{9n} \times Z_{3n}) \rtimes S_3$

	$G_{\!f}$	Δ(600)	$D^{(1)}_{18,6}$	Δ(1536)
Examples:	θ	±π/15	$\pm\pi/18$	$\pm\pi/16$
	$sin^2\theta_{13}$	0.0288	0.0201	0.0254

Quark sector: only the Cabibbo mixing angle can be reproduced for both the triplet and doublet+singlet assignment of left-handed quarks

$$V_{CKM} = \begin{pmatrix} \cos \theta_C & \sin \theta_C & 0 \\ -\sin \theta_C & \cos \theta_C & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \theta_C \approx \frac{\pi}{14}$$

[C.S. Lam, Phys.Lett.B656:193-198,2007;
 Blum, Hagedorn and Lindner, Phys.Rev. D77 (2008) 076004 ;
 Ishimori,King,Okada,Tanimoto,Phys.Lett. B743 (2015) 172-179 ;
 Yao, Ding, Phys.Rev. D92 (2015) no.9, 096010]

Next goal: measure leptonic CP violation

>Theoretical idea: flavor symmetry \rightarrow flavor+CP symmetries

[Grimus et al., J. Phys. A 20 (1987) L807; Harrison and Scott, Phys. Lett. B 535 (2002) 163; Lindner et al., JHEP 1304, 122; Feruglio et al., JHEP 1307, 027 (2013); Ding,King,Luhn,Stuart,JHEP1305,084(2013); Chen, Fallbacher,Mahanthappa,Ratz and Trautner, Nucl. Phys. B883, 267 (2014)...]

Semi-direct approach to lepton mixing

The mixing angles and CP violating phases are predicted in terms of a single real parameter $0 \le \theta \le \pi$

[Feruglio, Hagedorn, Ziegler, JHEP 1307, 027 (2013)]

Possible mixing patterns from finite flavor and CP symmetries

Only eight kinds of mixing matrices consistent with experimental data can be obtained up to row and column permutations.

$$\begin{split} U' &= \frac{1}{\sqrt{3}} \begin{pmatrix} \sqrt{2} \sin \varphi_1 & e^{i\varphi_2} & \sqrt{2} \cos \varphi_1 \\ \sqrt{2} \cos \left(\varphi_1 - \frac{\pi}{6}\right) & -e^{i\varphi_2} & -\sqrt{2} \sin \left(\varphi_1 - \frac{\pi}{6}\right) \\ \sqrt{2} \cos \left(\varphi_1 + \frac{\pi}{6}\right) & e^{i\varphi_2} & -\sqrt{2} \sin \left(\varphi_1 + \frac{\pi}{6}\right) \end{pmatrix} R_{23}(\theta) Q_{\nu} \\ U'' &= \frac{1}{\sqrt{3}} \begin{pmatrix} e^{i\varphi_1} & 1 & e^{i\varphi_2} \\ \omega e^{i\varphi_1} & 1 & \omega^2 e^{i\varphi_2} \\ \omega^2 e^{i\varphi_1} & 1 & \omega e^{i\varphi_2} \end{pmatrix} R_{13}(\theta) Q_{\nu} \\ R_{1j}(\theta) \text{ is the rotation matrix in the } ij \text{ plane} \\ U''' &= \frac{1}{\sqrt{3}} \begin{pmatrix} \sqrt{2} e^{i\varphi_1} \sin \varphi_2 & 1 & \sqrt{2} e^{i\varphi_1} \\ \sqrt{2} e^{i\varphi_1} \cos \left(\varphi_2 + \frac{\pi}{6}\right) & 1 & -\sqrt{2} e^{i\varphi_1} \sin \left(\varphi_2 + \frac{\pi}{6}\right) \\ -\sqrt{2} e^{i\varphi_1} \cos \left(\varphi_2 - \frac{\pi}{6}\right) & 1 & \sqrt{2} e^{i\varphi_1} \sin \left(\varphi_2 - \frac{\pi}{6}\right) \end{pmatrix} R_{13}(\theta) Q_{\nu} \end{aligned}$$

$$U^{IV(\alpha)} = \begin{pmatrix} -\sqrt{\frac{\phi_g}{\sqrt{5}}} & \sqrt{\frac{1}{\sqrt{5\phi_g}}} & 0\\ \sqrt{\frac{1}{2\sqrt{5\phi_g}}} & \sqrt{\frac{\phi_g}{2\sqrt{5}}} & -\frac{1}{\sqrt{2}}\\ \sqrt{\frac{1}{2\sqrt{5\phi_g}}} & \sqrt{\frac{\phi_g}{2\sqrt{5}}} & \frac{1}{\sqrt{2}} \end{pmatrix} R_{13}(\theta)Q_{\nu}, \qquad U^{IV(b)} = \begin{pmatrix} -i\sqrt{\frac{\phi_g}{\sqrt{5}}} & \sqrt{\frac{1}{\sqrt{5\phi_g}}} & 0\\ i\sqrt{\frac{1}{2\sqrt{5\phi_g}}} & \sqrt{\frac{\phi_g}{2\sqrt{5}}} & -\frac{1}{\sqrt{2}}\\ i\sqrt{\frac{1}{2\sqrt{5\phi_g}}} & \sqrt{\frac{\phi_g}{2\sqrt{5}}} & \frac{1}{\sqrt{2}} \end{pmatrix} R_{13}(\theta)Q_{\nu}, \qquad U^{IV(b)} = \begin{pmatrix} (\sqrt{3}-1)e^{i\phi} & 2 & -(\sqrt{3}+1)e^{i\left(\phi+\frac{3\pi}{4}\right)}\\ -(\sqrt{3}+1)e^{i\phi} & 2 & (\sqrt{3}-1)e^{i\left(\phi+\frac{3\pi}{4}\right)}\\ -(\sqrt{3}+1)e^{i\phi} & 2 & (\sqrt{3}-1)e^{i\left(\phi+\frac{3\pi}{4}\right)} \end{pmatrix} R_{13}(\theta)Q_{\nu}, \qquad U^{VII} = \frac{1}{2\sqrt{3}} \begin{pmatrix} -\frac{\sqrt{3}}{s_3} & 2\sqrt{2} & \frac{s_2-s_1}{s_1s_2}\\ \frac{\sqrt{3}}{s_2} & 2\sqrt{2} & -\frac{s_1+s_3}{s_1s_2}\\ \frac{\sqrt{3}}{s_1} & 2\sqrt{2} & \frac{s_2+s_3}{s_2s_3} \end{pmatrix} R_{23}(\theta)Q_{\nu}, \qquad U^{VIII} = \frac{1}{2}R_{13}^{T}(\theta) \begin{pmatrix} \sqrt{2}e^{i\phi} & -\sqrt{2}e^{i\phi} & 0\\ 1 & 1 & -\sqrt{2}e^{i\phi_1}\\ 1 & 1 & \sqrt{2}e^{i\phi_2} \end{pmatrix} Q_{\nu}$$

> All these viable mixing patterns can be obtained from the SU(3) finite subgroups $\Delta(6n^2)$, $D_{9n,3n}^{(1)}$, A₅ and Σ(168) combined with CP symmetry.

➤The quark mixing angles and CP phase still can not be explained in this approach.

Results collected on the website

I(a)	I(b)	II	III	IV	V	VI	VII	VIII	
$U_{ m PMNS}^{I(b)}$	$=\frac{1}{\sqrt{3}}\left($	$\sqrt{2}$ $-\sqrt{2}\sin^2$	$egin{array}{l} \cos arphi_1 \ { m n}ig(arphi_1 - \ { m n}ig(arphi_1 + ig) ig) \end{array}$	$egin{array}{c} e^i \ rac{\pi}{6} & -\epsilon \ rac{\pi}{6} & e^i \end{array}$	$arphi_2 \ arphi_2 \ \sqrt{2} \ arphi_2 \ arphi_2 \ \sqrt{2} \ arphi_2 \ arphi_2 \ \sqrt{2} \ arphi_2 \$	$\sqrt{2}\sin arphi \ \overline{2}\cos(arphi_1$	$\left. egin{array}{c} arphi_1 \ -rac{\pi}{6}) \ +rac{\pi}{6} \end{pmatrix} ight angle$	$S_{12}(heta)$	
Gı	roup ID				$(arphi_1,arphi_2)$	2)			
[6	48,259]	($ \begin{pmatrix} \frac{\pi}{18}, -\frac{\pi}{6} \end{pmatrix}, \begin{pmatrix} \frac{\pi}{18}, 0 \end{pmatrix}, \begin{pmatrix} \frac{\pi}{18}, \frac{\pi}{3} \end{pmatrix}, \begin{pmatrix} \frac{\pi}{18}, \frac{\pi}{2} \end{pmatrix}, \begin{pmatrix} \frac{17\pi}{18}, -\frac{\pi}{6} \end{pmatrix}, \\ \begin{pmatrix} \frac{17\pi}{18}, 0 \end{pmatrix}, \begin{pmatrix} \frac{17\pi}{18}, \frac{\pi}{3} \end{pmatrix}, \begin{pmatrix} \frac{17\pi}{18}, \frac{\pi}{2} \end{pmatrix} $						
[726,5]	$(\frac{2}{3})$	$ \begin{pmatrix} \frac{2\pi}{33}, -\frac{2\pi}{11} \end{pmatrix}, \begin{pmatrix} \frac{2\pi}{33}, 0 \end{pmatrix}, \begin{pmatrix} \frac{2\pi}{33}, \frac{\pi}{11} \end{pmatrix}, \begin{pmatrix} \frac{2\pi}{33}, \frac{3\pi}{11} \end{pmatrix}, \begin{pmatrix} \frac{2\pi}{33}, \frac{4\pi}{11} \end{pmatrix}, \\ \begin{pmatrix} \frac{2\pi}{33}, \frac{5\pi}{11} \end{pmatrix}, \begin{pmatrix} \frac{31\pi}{33}, -\frac{2\pi}{11} \end{pmatrix}, \begin{pmatrix} \frac{31\pi}{33}, 0 \end{pmatrix}, \begin{pmatrix} \frac{31\pi}{33}, \frac{\pi}{11} \end{pmatrix}, \\ \begin{pmatrix} \frac{31\pi}{33}, \frac{3\pi}{11} \end{pmatrix}, \begin{pmatrix} \frac{31\pi}{33}, \frac{4\pi}{11} \end{pmatrix}, \begin{pmatrix} \frac{31\pi}{33}, \frac{5\pi}{11} \end{pmatrix} $						
[1	[734,5]	$\left(\frac{\pi}{17}\right)$	$(rac{3\pi}{17},-rac{8\pi}{17}),\ (rac{3\pi}{17}),\ (rac{3\pi}{17}),\ (rac{16\pi}{17},-rac{16\pi}{17},rac{16\pi}{17}),\ (rac{16\pi}{17},rac{3\pi}{17}),\ (rac{16\pi}{17}),\ (ra$	$\left(\frac{\pi}{17}, -\frac{6}{17}, -\frac{6\pi}{17}\right), \left(\frac{4\pi}{17}\right), \left(\frac{6\pi}{17}\right), \left(\frac{16}{17}, -\frac{6\pi}{17}\right), \left(\frac{16\pi}{17}, -\frac{16\pi}{17}\right), \left(\frac{16\pi}{17}, -\frac{16\pi}{17}, -\frac{16\pi}{17}, -\frac{16\pi}{17}\right)$	$(rac{\pi}{17}), (rac{\pi}{17}, rac{5\pi}{17}), (rac{\pi}{17}, rac{5\pi}{17}), (rac{5\pi}{17}, 0), (rac{1}{2}, rac{4\pi}{17}), (rac{1}{2})$	$\begin{array}{c} 0), \left(\frac{\pi}{17}, \\ , \left(\frac{\pi}{17}, \frac{7\pi}{17}, \\ \frac{6\pi}{17}, \frac{\pi}{17}\right), \\ \frac{6\pi}{17}, \frac{5\pi}{17}\right), \end{array}$	$ \frac{\pi}{17} , \left(\frac{\pi}{17}, \frac{\pi}{17}, \frac{16\pi}{17}, \frac{16\pi}{17}, \frac{2\pi}{17}, \frac{16\pi}{17}, \frac{2\pi}{17}, \frac{16\pi}{17}, \frac{7\pi}{17} \right) $	$\left(\frac{2\pi}{17}\right),$ $\left(-\frac{8\pi}{17}\right),$ $\left(\frac{5}{7}\right),$ $\left(\frac{1}{7}\right)$	

http://staff.ustc.edu.cn/~dinggj/cp_scan.html

Another scheme to predict lepton mixing from flavor and CP

$U_{PMNS}(\theta_1, \theta_2) = R_{23}^T(\theta_1) \Sigma_l^{\dagger} \Sigma_v R_{23}(\theta_2) Q_v$

Since the lepton masses are not constrained, permutations of rows and columns of U_{PMNS} are possible

$$P_{12} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, P_{13} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, P_{23} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

- > One element is completely fixed by the residual symmetry
- All mixing angles and CP phases are expressed in terms of two free parameters θ_{1,2}ε[0,π)

Δ(6n²) flavor group and CP symmetry

 $\geq \Delta(6n^2)$ is a non-abelian finite subgroup of SU(3), it is isomorphic to $(Z_n \times Z_n) \rtimes S_3$. Its four generators satisfy: $a^3 = b^2 = (ab)^2 = 1,$ $\int_{aca^{-1}} c^{n} = d^{n} = 1, \quad cd = dc,$ $aca^{-1} = c^{-1}d^{-1}, \quad ada^{-1} = c, \quad bcb^{-1} = d^{-1}, \quad bdb^{-1} = c^{-1}$ Familiar examples: $\Delta(6 \times 1^2) \cong S_3$, $\Delta(6 \times 2^2) \cong S_4$ For the second $a = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \quad b = -\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad c = \begin{pmatrix} \eta & 0 & 0 \\ 0 & \eta^{-1} & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad d = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \eta & 0 \\ 0 & 0 & \eta^{-1} \end{pmatrix}$

Physical CP transformations are of the same form as the flavor symmetry transformations in the chosen basis.

 $X\rho^*(g)X^{-1} = \rho(g')$

[Hagedorn, Meroni and Molinaro, Nucl. Phys. B 891, 499 (2015); Ding,King and Neder, JHEP 1412, 007 (2014)] 14

Predictions for lepton mixing from $\Delta(6n^2)$ and CP

We find four independent viable lepton mixing patterns

Case (I):
$$Z_{2}^{g_{l}} = Z_{2}^{bc^{x}d^{x}}, X_{l} = \left\{ c^{\gamma}d^{-2x-\gamma}, bc^{x+\gamma}d^{-x-\gamma} \right\},$$

 $Z_{2}^{g_{v}} = Z_{2}^{bc^{y}d^{y}}, X_{v} = \left\{ c^{\delta}d^{-2y-\delta}, bc^{y+\delta}d^{-y-\delta} \right\}$

The lepton mixing matrix is determined to be

$$U_{I} = \begin{pmatrix} \cos \varphi_{1} & s_{2} \sin \varphi_{1} & -c_{2} \sin \varphi_{1} \\ -s_{1} \sin \varphi_{1} & c_{1}c_{2}e^{i\varphi_{2}} + s_{1}s_{2} \cos \varphi_{1} & c_{1}s_{2}e^{i\varphi_{2}} - c_{2}s_{1} \cos \varphi_{1} \\ c_{1} \sin \varphi_{1} & c_{2}s_{1}e^{i\varphi_{2}} - c_{1}s_{2} \cos \varphi_{1} & s_{1}s_{2}e^{i\varphi_{2}} + c_{1}c_{2} \cos \varphi_{1} \end{pmatrix} Q_{v}$$

with

$$\varphi_1 = \frac{x - y}{n}\pi, \quad \varphi_2 = \frac{3(x - y + \gamma - \delta)}{n}\pi$$
 depend on residual symmetry

$$c_1 \equiv \cos \theta_1, \ c_2 \equiv \cos \theta_2, s_1 \equiv \sin \theta_1, s_2 \equiv \sin \theta_2, 0 \le \theta_{1,2} \le \pi$$

>Nine independent permutations

$$\begin{split} U_{I,1} &= U_I, \qquad U_{I,2} = U_I P_{12}, \qquad U_{I,3} = U_I P_{13}, \\ U_{I,4} &= P_{12} U_I, \qquad U_{I,5} = P_{12} U_I P_{12}, \qquad U_{I,6} = P_{12} U_I P_{13}, \\ U_{I,7} &= P_{13} U_I, \qquad U_{I,8} = P_{13} U_I P_{12}, \qquad U_{I,9} = P_{13} U_I P_{13}, \end{split}$$

Sum rules between Dirac CP phase and mixing angles

$$\begin{split} U_{1,1} &: \cos^2 \theta_{12} \cos^2 \theta_{13} = \cos^2 \varphi_1, \qquad U_{1,2} : \sin^2 \theta_{12} \cos^2 \theta_{13} = \cos^2 \varphi_1, \\ U_{1,6} &: \sin^2 \theta_{23} \cos^2 \theta_{13} = \cos^2 \varphi_1, \qquad U_{1,9} : \cos^2 \theta_{23} \cos^2 \theta_{13} = \cos^2 \varphi_1, \\ U_{1,4} &: \cos \delta_{CP} = \frac{2(\cos^2 \varphi_1 - \sin^2 \theta_{12} \cos^2 \theta_{23} - \sin^2 \theta_{13} \cos^2 \theta_{12} \sin^2 \theta_{23})}{\sin 2\theta_{12} \sin \theta_{13} \sin 2\theta_{23}}, \\ U_{1,5} &: \cos \delta_{CP} = -\frac{2(\cos^2 \varphi_1 - \cos^2 \theta_{12} \cos^2 \theta_{23} - \sin^2 \theta_{13} \sin^2 \theta_{12} \sin^2 \theta_{23})}{\sin 2\theta_{12} \sin \theta_{13} \sin 2\theta_{23}}, \\ U_{1,7} &: \cos \delta_{CP} = -\frac{2(\cos^2 \varphi_1 - \sin^2 \theta_{12} \sin^2 \theta_{23} - \sin^2 \theta_{13} \cos^2 \theta_{12} \cos^2 \theta_{23})}{\sin 2\theta_{12} \sin \theta_{13} \sin 2\theta_{23}}, \\ U_{1,8} &: \cos \delta_{CP} = \frac{2(\cos^2 \varphi_1 - \cos^2 \theta_{12} \sin^2 \theta_{23} - \sin^2 \theta_{13} \cos^2 \theta_{12} \cos^2 \theta_{23})}{\sin 2\theta_{12} \sin \theta_{13} \sin 2\theta_{23}}, \end{split}$$

16

Simple example: $U_{l,4}$ with $\varphi_1 = \frac{\pi}{3}, \varphi_2 = 0$ in n=3

$\theta_l^{\rm bf}/\pi$	$\theta_{\nu}^{\rm bf}/\pi$	$\chi^2_{\rm min}$	$\sin^2 \theta_{13}$	$\sin^2 \theta_{12}$	$\sin^2 \theta_{23}$	$\sin \delta$	$\sin \alpha_{21}$	$\sin \alpha_{31}$
0.398	0.228	0.00143	0.0234	0.308	0.438	0	0	0

Nontrivial CP phases can be achieved from groups with $n \ge 4$

Case (II):
$$Z_2^{g_l} = Z_2^{bc^x d^x}, X_l = \{c^{\gamma} d^{-2x-\gamma}, bc^{x+\gamma} d^{-x-\gamma}\},$$

 $Z_2^{g_v} = Z_2^{abc^y}, X_v = \{c^{\delta} d^{2y+2\delta}, abc^{y+\delta} d^{2y+2\delta}\}$

➤The PMNS mixing matrix is

$$U_{II} = \frac{1}{2} \begin{pmatrix} 1 & c_2 + \sqrt{2}e^{i\varphi_4}s_2 & s_2 - \sqrt{2}e^{i\varphi_4}c_2 \\ s_1 + \sqrt{2}e^{i\varphi_3}c_1 & s_1c_2 - \sqrt{2}(e^{i\varphi_3}c_1c_2 + e^{i\varphi_4}s_1s_2) & s_1s_2 - \sqrt{2}(e^{i\varphi_3}c_1s_2 - e^{i\varphi_4}c_2s_1) \\ c_1 - \sqrt{2}e^{i\varphi_3}s_1 & c_1c_2 + \sqrt{2}(e^{i\varphi_3}c_2s_1 - e^{i\varphi_4}c_1s_2) & c_1s_2 + \sqrt{2}(e^{i\varphi_3}s_1s_2 + e^{i\varphi_4}c_1c_2) \end{pmatrix} Q_{V}$$

with
$$\varphi_3 = \frac{3\gamma + 2(x+y)}{n}\pi, \ \varphi_4 = -\frac{3\delta + 2(x+y)}{n}\pi$$

Four viable row and column permutations

$$U_{II,1} = P_{12}U_{II}, \quad U_{II,2} = P_{12}U_{II}P_{12},$$
$$U_{II,3} = P_{13}U_{II}, \quad U_{II,4} = P_{13}U_{II}P_{12}$$

≻Sum rules

$$\begin{split} U_{II,1} &: \cos \delta_{CP} = \frac{1 - 4\sin^2 \theta_{12} \cos^2 \theta_{23} - 4\sin^2 \theta_{13} \cos^2 \theta_{12} \sin^2 \theta_{23}}{2\sin 2\theta_{12} \sin \theta_{13} \sin 2\theta_{23}}, \\ U_{II,2} &: \cos \delta_{CP} = -\frac{1 - 4\cos^2 \theta_{12} \cos^2 \theta_{23} - 4\sin^2 \theta_{13} \sin^2 \theta_{12} \sin^2 \theta_{23}}{2\sin 2\theta_{12} \sin \theta_{13} \sin 2\theta_{23}}, \\ U_{II,3} &: \cos \delta_{CP} = -\frac{1 - 4\sin^2 \theta_{12} \sin^2 \theta_{23} - 4\sin^2 \theta_{13} \cos^2 \theta_{12} \cos^2 \theta_{23}}{2\sin 2\theta_{12} \sin \theta_{13} \sin 2\theta_{23}}, \\ U_{II,4} &: \cos \delta_{CP} = \frac{1 - 4\cos^2 \theta_{12} \sin^2 \theta_{23} - 4\sin^2 \theta_{13} \sin^2 \theta_{12} \cos^2 \theta_{23}}{2\sin 2\theta_{12} \sin \theta_{13} \sin 2\theta_{23}}, \end{split}$$

test the model at future facilities

Simple example: $U_{II,1}$ with $\varphi_3 = 0, \varphi_4 = \frac{\pi}{2}$ in n=2

$\theta_1^{\rm bf}/\pi$	$\theta_2^{\mathrm{bf}}/\pi$	$\chi^2_{ m min}$	$\sin^2 \theta_{13}$	$\sin^2 \theta_{12}$	$\sin^2 \theta_{23}$	$\sin \delta$	$\sin \alpha_{21}$	$\sin \alpha_{31}$
0.224	0	9.890	0.0248	0.343	0.513	0	0	0

Case (III):
$$Z_2^{g_l} = Z_2^{bc^x d^x}, X_l = \left\{ c^{\gamma} d^{-2x-\gamma}, bc^{x+\gamma} d^{-x-\gamma} \right\}, Z_2^{g_v} = Z_2^{c^{n/2}}, X_v = c^{\alpha} d^{\delta}$$

≻The PMNS mixing matrix is

$$U_{III} = \frac{1}{\sqrt{2}} \begin{pmatrix} c_2 & s_2 & -e^{i\varphi_6} \\ c_2 s_1 + \sqrt{2}e^{i\varphi_5}c_1 s_2 & s_1 s_2 - \sqrt{2}e^{i\varphi_5}c_1 c_2 & e^{i\varphi_6}s_1 \\ c_1 c_2 - \sqrt{2}e^{i\varphi_5}s_1 s_2 & \sqrt{2}e^{i\varphi_5}c_2 s_1 + c_1 s_2 & e^{i\varphi_6}c_1 \end{pmatrix} Q_{\nu}$$

with

$$\varphi_5 = \frac{2x - 2\alpha + 3\gamma + \delta}{n} \pi, \varphi_6 = -\frac{2x + \alpha + \delta}{n} \pi$$

➢ Four independent viable permutations

$$U_{III,1} = P_{12}U_{III}P_{23}, \qquad U_{III,2} = P_{12}U_{III},$$
$$U_{III,3} = P_{12}P_{13}U_{III}P_{23}, \qquad U_{III,4} = P_{12}P_{13}U_{III}$$

➤Sum rules

$$U_{III,2}: \cos^{2}\theta_{13}\sin^{2}\theta_{23} = \frac{1}{2}, \qquad U_{III,4}: \cos^{2}\theta_{13}\cos^{2}\theta_{23} = \frac{1}{2},$$
$$U_{III,1}: \cos\delta_{CP} = -\frac{1-2\cos^{2}\theta_{12}\cos^{2}\theta_{23} - 2\sin^{2}\theta_{13}\sin^{2}\theta_{12}\sin^{2}\theta_{23}}{\sin 2\theta_{12}\sin\theta_{13}\sin 2\theta_{23}},$$
$$U_{III,3}: \cos\delta_{CP} = \frac{1-2\cos^{2}\theta_{12}\sin^{2}\theta_{23} - 2\sin^{2}\theta_{13}\sin^{2}\theta_{12}\cos^{2}\theta_{23}}{\sin 2\theta_{12}\sin\theta_{13}\sin 2\theta_{23}}$$

testable in future experiments

$ heta_1^{ m bf}/\pi$	$\theta_2^{\mathrm{bf}}/\pi$	$\chi^2_{\rm min}$	$\sin^2 \theta_{13}$	$\sin^2 \theta_{12}$	$\sin^2 \theta_{23}$	$\sin \delta$	$\sin \alpha_{21}$	$\sin \alpha_{31}$
0.0692	0.684	5.158	0.0233	0.308	0.512	-0.991	-0.624	-0.453

Predictions for neutrinoless double decay

$$m_{ee} \equiv \left| m_1 \cos^2 \theta_{12} \cos^2 \theta_{13} + m_2 \sin^2 \theta_{12} \cos^2 \theta_{13} e^{i\alpha_{21}} + m_3 \sin^2 \theta_{13} e^{i(\alpha_{31} - 2\delta_{CP})} \right|$$

The effective mass $m_{ee} \ge 1.3 \times 10^{-3} eV$ for IO mass spectrum

Case (IV):
$$Z_2^{g_l} = Z_2^{bc^x d^x}, X_l = \{c^{\gamma} d^{-2x-\gamma}, bc^{x+\gamma} d^{-x-\gamma}\},$$

$$Z_{2}^{g_{\nu}} = Z_{2}^{c^{n/2}}, X_{\nu} = abc^{\delta}d^{2\delta},$$

The PMNS matrix is

$$U_{IV} = \frac{1}{2} \begin{pmatrix} 1 & 1 & -\sqrt{2}e^{i\theta_2} \\ s_1 + \sqrt{2}e^{i(2\theta_2 + \varphi_7)}c_1 & s_1 - \sqrt{2}e^{i(2\theta_2 + \varphi_7)}c_1 & \sqrt{2}e^{i\theta_2}s_1 \\ c_1 - \sqrt{2}e^{i(2\theta_2 + \varphi_7)}s_1 & c_1 + \sqrt{2}e^{i(2\theta_2 + \varphi_7)}s_1 & \sqrt{2}e^{i\theta_2}c_1 \end{pmatrix} Q_{\nu}$$

with $\varphi_7 = \frac{6x + 3(\gamma + 2\delta)}{n}\pi$

Two independent permutations

$$U_{IV,1} = P_{12}U_{IV}, \quad U_{IV,2} = P_{12}P_{13}U_{IV}$$

≻Sum rules

$$U_{IV,1}: \cos^{2}\theta_{13}\sin^{2}\theta_{23} = \frac{1}{2}, \quad \cos\delta_{CP} = \frac{1 - 4\sin^{2}\theta_{12}\cos^{2}\theta_{23} - 4\sin^{2}\theta_{13}\cos^{2}\theta_{12}\sin^{2}\theta_{23}}{2\sin 2\theta_{12}\sin \theta_{13}\sin 2\theta_{23}},$$
$$U_{IV,2}: \cos^{2}\theta_{13}\cos^{2}\theta_{23} = \frac{1}{2}, \quad \cos\delta_{CP} = -\frac{1 - 4\sin^{2}\theta_{12}\sin^{2}\theta_{23} - 4\sin^{2}\theta_{13}\cos^{2}\theta_{13}\cos^{2}\theta_{12}\cos^{2}\theta_{23}}{2\sin 2\theta_{12}\sin \theta_{13}\sin 2\theta_{23}}$$

Example of $U_{IV,2}$ with $\varphi_7=0$ in n=2

$\theta_1^{\mathrm{bf}}/\pi$	$\theta_2^{\mathrm{bf}}/\pi$	$\chi^2_{\rm min}$	$\sin^2 \theta_{13}$	$\sin^2 \theta_{12}$	$\sin^2 \theta_{23}$	$\sin \delta$	$\sin \alpha_{21}$	$\sin \alpha_{31}$
0.0718	0	6.938	0.0250	0.342	0.487	0	0	0

Extending to the quark sector

Four observables: three quark mixing angles+one CP phase are predicted in terms of two parameters θ_{1,2}

Predictions for quark mixing from $\Delta(6n^2)$ and CP

One viable quark mixing pattern is found up to row and column permutations

Residual symmetry:
$$Z_{2}^{g_{u}} = Z_{2}^{bc^{x}d^{x}}, X_{u} = \{c^{\gamma}d^{-2x-\gamma}, bc^{x+\gamma}d^{-x-\gamma}\},$$

 $Z_{2}^{g_{d}} = Z_{2}^{bc^{\gamma}d^{\gamma}}, X_{d} = \{c^{\delta}d^{-2y-\delta}, bc^{y+\delta}d^{-y-\delta}\}$

The CKM matrix is determined to be

$$V_{CKM} = \begin{pmatrix} s_2 \sin \varphi_1 & \cos \varphi_1 & -c_2 \sin \varphi_1 \\ c_1 c_2 e^{i\varphi_2} + s_1 s_2 \cos \varphi_1 & -s_1 \sin \varphi_1 & c_1 s_2 e^{i\varphi_2} - c_2 s_1 \cos \varphi_1 \\ c_2 s_1 e^{i\varphi_2} - c_1 s_2 \cos \varphi_1 & c_1 \sin \varphi_1 & s_1 s_2 e^{i\varphi_2} + c_1 c_2 \cos \varphi_1 \end{pmatrix}$$

with

$$\varphi_1 = \frac{x - y}{n} \pi$$
, $\varphi_2 = \frac{3(x - y + \gamma - \delta)}{n} \pi$ fixed by residual symmetry

> Expressions of mixing parameters

$$\sin^{2} \theta_{13} = \sin^{2} \varphi_{1} \cos^{2} \theta_{2}, \quad \sin^{2} \theta_{12} = \frac{\cos^{2} \varphi_{1}}{1 - \sin^{2} \varphi_{1} \cos^{2} \theta_{2}},$$
$$\sin^{2} \theta_{23} = \frac{2\cos^{2} \theta_{1} \sin^{2} \theta_{2} + 2\sin^{2} \theta_{1} \cos^{2} \theta_{2} \cos^{2} \varphi_{1} - \cos \varphi_{1} \cos \varphi_{2} \sin 2\theta_{1} \sin 2\theta_{2}}{2 - 2\cos^{2} \theta_{2} \sin^{2} \varphi_{1}},$$

$$J_{CP} = \frac{1}{8}\sin\varphi_1\sin 2\varphi_1\sin\varphi_2\sin 2\theta_1\sin 2\theta_2$$

> Two correlations

$$\cos^2 \theta_{13} \sin^2 \theta_{12} = \cos^2 \varphi_1,$$
$$J_{CP} \approx \pm \frac{1}{2} \sin \varphi_2 \sin 2\varphi_1 \sin \theta_{13} \sin \theta_{23}.$$

Experimental data can be accommodated for certain choices of residual symmetry parameters $\phi_{1,2}$

Some viable choices of parameters in n=7

> Quark sector : $\phi_1 = \phi_2 = 3\pi/7$

	$\theta_1^{\rm bf}/\pi$	$\theta_2^{\rm bf}/\pi$	$\sin \theta_{12}$	$\sin \theta_{23}$	$\sin \theta_{13}$	J_{CP}
Our	0.4867	0.4988	0.22252	0.04158	0.00357	3.14615×10^{-5}
Data			0.22523 ± 0.00065	0.0417 ± 0.00057	0.00360 ± 0.00012	$(3.109 \pm 0.086) \times 10^{-5}$

\succ Lepton sector: $\varphi_3 = 2\pi/7$, $\varphi_4 = \pi/7$ for $U_{II,4}$

	$\theta_1^{\rm bf}/\pi$	$\theta_2^{ m bf}/\pi$	$\chi^2_{ m min}$	$\sin^2 \theta_{13}$	$\sin^2 \theta_{12}$	$\sin^2 \theta_{23}$	$\sin \delta$	$\sin \alpha_{21}$	$\sin \alpha_{31}$
Our	0.381	0.956	3.006	0.0238	0.325	0.404	-0.992	0.784	0.995
Data				$0.0176 \rightarrow 0.0295$	$0.259 \rightarrow 0.359$	$0.374 \rightarrow 0.626$	$-1 \rightarrow 1$	$-1 \rightarrow 1$	$-1 \rightarrow 1$

Summary

- Flavor and CP symmetries broken to Z2xCP in both neutrino and charged lepton sectors can predict mixing angles and CP phases in terms of two parameters.
- The quark mixing angles and CP violation phase can also be accommodated in this approach.
- A unified description of quark and lepton mixing can be achieved, $\Delta(6.7^2) = \Delta(294)$ is a good candidate for flavor symmetry.
- It is interesting to consider model construction and strong CP problem.

Thank you for your attention!

Backup

• Convention for rotation matrices

$$R_{12}(\theta) = \begin{pmatrix} \cos\theta & \sin\theta & 0\\ -\sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix}$$

$$R_{13}(\theta) = \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix}$$

$$R_{23}(\theta) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & \sin\theta \\ 0 & -\sin\theta & \cos\theta \end{pmatrix}$$

predictions for neutrinoless double decay

• 1st example:
$$U_{l,4}$$
 with $\varphi_1 = \frac{\pi}{3}, \varphi_2 = 0$ in n=3

• 2nd example: $U_{II,1}$ with $\varphi_3 = 0, \varphi_4 = \frac{\pi}{2}$ in n=2

• 3rd example: : $U_{III,2}$ with $\varphi_5 = \frac{\pi}{2}, \varphi_6 = 0$ in n=2

The effective mass $m_{ee} \ge 1.3 \times 10^{-3} eV$ for IO mass spectrum

• 4^{th} example of $U_{IV,2}$ with $\varphi_7=0$ in n=2

