CP-odd invariants for multi-Higgs models and applications with discrete symmetry: explicit, spontaneous, and geometric violation of CP

Thomas Neder

IFIC, CSIC/University of Valencia

Bonn, 4th April 2017

(Based on work with Christoph Luhn, Ivo de Medeiros Varzielas, Steve F. King: arxiv:1603.06942 and 1704.xxxx)

IFIC, CSIC/University of Valencia

= nar

イロト イボト イヨト イヨト

CP-odd invariants for multi-Higgs models and applications with discrete symmetry: explicit, spontaneous, and geomet

Outline

- CP Violation: Introduction
- CPV in multi-Higgs models
- \blacksquare Spontaneous CPV the sales pitch
- CP-odd basis invariants
- Construction of new invariants
- Applications and Examples for explicit violation of CP
- Invariants for spontaneous CPV
- Minimizing complicated multi-Higgs potentials
- Summary of Results, Conclusions and Outlook

IFIC, CSIC/University of Valencia

∃ nar

Thomas Neder

CP Violation: Introduction

- CP is a combined symmetry transformation of charge conjugation and space inversion, e.g. $\varphi(x) \mapsto X\varphi^*(x^P)$ with a unitary matrix X.
- Violation of CP seems to be simply necessary for Baryogenesis¹ and thus all our existence.
 - (Together with Baryon number violation.)
 - As measured by Planck: $n_B/n_\gamma = (6.10 \pm 0.04) \times 10^{-10}$ In cosmic rays:² $\frac{\bar{p}}{p} \approx 10^{-4}$
- Overlap between flavour and CP: Only currently confirmed violation of CP happens in the quark Yukawa sector **but is not sufficient for succesful baryogenesis.**³
- Additional sources of CP violation are needed and can be introduced:
 - \blacksquare In an extended scalar sector 4 \rightarrow later
 - Or in the lepton sector (As global fits are hinting at with $\delta_{CP} \simeq -\pi/2$.) \rightarrow Leptogenesis ⁵ \rightarrow Lepton-flavour-models
 - The latter also leads to an extended scalar sector: Flavour models normally need scalar particles that break extended symmetries.
- Via CPT theorem: Is a time direction built into the laws of nature?

```
<sup>1</sup>Sakharov, 1967
<sup>2</sup>Cline 2006, arxiv:0609145
<sup>3</sup>Kuzmin, Rubakov, Shaposhnikov 1985
<sup>4</sup>Lee, 1973
```

⁵Yanagida, Fukugita 1986

Thomas Neder

IFIC, CSIC/University of Valencia

-

イロン イボン イヨン イヨン

CPV in Multi-Higgs-Models

- In the most general 2HDM, additional CP violation is introduced in complex couplings⁶.
- The most general 2HDM (when coupled to fermions) has FCNC.
- \blacksquare Forbidding the FCNC via symmetry automatically forbids CP violation in 2HDM \rightarrow 3HDM, or more
- In flavour models, fermions transform under 3-dim irrep which needs to be broken \rightarrow introduce scalars that transform under this irrep
- Extended scalar models can introduce two kinds of new CP violation:
- **Explicit** CPV: Parameters of potential violate CP in unbroken phase
- **Spontaneous** CPV: The Lagrangian is CP-invariant, vacuum violates CP
- Multi-Higgs potentials can have natural discrete symmetries, which can lead to
- Geometric CPV: The CP-violating phase is fixed by the symmetry. For a long time, only one example was known.
- Last but not least: A first Higgs particle has been discovered, there might be more! (Even if the new particle's mass is not going to be 750 GeV.)

⁶For a review of 2HDM: Branco, Ferreira, Lavoura, Rebelo, Sher, Silva, 2011 + (=) = - () ()

CP-odd invariants for multi-Higgs models and applications with discrete symmetry: explicit, spontaneous, and geomet

Spontaneous CP Violation — the Sales Pitch

- Spontaneous violation of CP arises when the Lagrangian has a (generalised) CP symmetry, but the vacuum expectation value breaks this CP symmetry.
- CP is a symmetry which acts on known degrees of freedom in a known way.
- Models where CP is initially conserved have a greatly reduced number of parameters.
- Due to the controlled breaking of CP, low-energy observables are functions of possibly extremely-high-energy parameters.
- \blacksquare In models with a broken CP symmetry, there is no strong CP problem as initially the $\theta\text{-term}$ is forbidden.⁷
- For special cases, so-called geometric violation of CP can arise, in which the spontaneously CP violating phases are fixed by symmetry of the potential, and additionally are protected against renormalization corrections by a residual symmetry.⁸

Thomas Neder

IFIC, CSIC/University of Valencia

-

イロン イボン イヨン イヨン

⁷e.g. Branco, Lavoura, Silva, 1999

⁸Branco, Gerard, Grimus, 1983; Branco, Ivanov, 2015

CP-odd Basis invariants

- Extended scalar potentials are often too complicated to trivially recognize if CP is violated or not.
- Additionally basis changes obscure the situation.
- **CP-odd basis invariants**⁹ solve both of these problems: eliminate basis changes and isolate CP-violating quantities.
- Example of CP-odd basis invariant in the fermion sector: Jarlskog invariant¹⁰
- Invariants exist that can indicate both explicit and spontaneous CPV and distinguish between the two.
- However, only for 2HDM a basis of invariants was known. For 3HDM with additional symmetries, these known invariants vanish trivially without indicating CP conservation.
- Observables of CP violation have to be functions of CP-odd invariants, but relation often non-trivial.
- CP is conserved \Rightarrow All CP-odd invariants are zero
- At least one CP-odd invariant non-zero \Rightarrow CP is violated

Thomas Neder

IFIC, CSIC/University of Valencia

-

(日) (同) (日) (日)

⁹Mendez, Pomarol, 1991; Lavoura, Silva, 1994; Botella, Silva, 1995; Branco, Rebelo, Silva-Marcos, 2005; Davidson, Haber, 2005; Gunion, Haber, 2005

¹⁰ Jarlskog, 1985

Construction of new invariants

Any even scalar potential can be written in a standard form:

$$V = \phi^{*a} Y_a^b \phi_b + \phi^{*a} \phi^{*c} Z_{ac}^{bd} \phi_b \phi_d$$

- \blacksquare Y and Z transform under symmetry and basis transformations.
- Any product of *Y*s and *Z*s where indices are correctly contracted form an invariant:

$$I_{\sigma}^{(n_Z,m_Y)} \equiv Y_{\sigma(a_1)}^{a_1} \dots Y_{\sigma(a_{m_Y})}^{a_{m_Y}} Z_{\sigma(b_1)\sigma(b_2)}^{b_1 b_2} \dots Z_{\sigma(b_{2n_Z-1})\sigma(b_{2n_Z})}^{b_{2n_Z-1}b_{2n_Z}} \text{ with } \sigma \in S_{m_Y+2n_Z}$$

By construction, complex conjugation interchanges upper and lower indicesThe CP-odd part of any invariant can then be extracted:

$$\mathcal{I} = I - I^*$$

IFIC, CSIC/University of Valencia

▲ロト ▲団ト ▲ヨト ▲ヨト 三国 - のへで

Thomas Neder

Diagrams for invariants

Invariants can be expressed via diagrams¹¹ using the rule

$$X^{a.}_{..}X^{..}_{a.} = \bullet \longrightarrow \bullet$$

• Additionally, because of the symmetry of Z_{cd}^{ab} under $a \leftrightarrow b$ and/or $c \leftrightarrow d$, one does not need to distinguish the two outgoing arrows:

Contracting a tensor with itself forms a loop

$$X_{a.}^{a.} = \bigcirc$$

• As a CP transformation interchanges upper and lower indices, the CP conjugate of a diagram is the identical diagram with inverted arrows.

¹¹Davidson, Haber, 2005

Thomas Neder

IFIC, CSIC/University of Valencia

э.

The smallest CP-odd invariant (for explicit CP violation)

The smallest CP-odd invariant¹² (for explicit CP violation) is the difference $\mathcal{I}_1 = I_1 - I_1^*$ between

$$I_1 \equiv Z^{ab}_{ae} Z^{cd}_{bf} Y^e_c Y^f_d = \bigcirc$$

and its CP conjugate

Thomas Neder

$$I_1^* \equiv Z_{ab}^{ae} Z_{cd}^{bf} Y_e^c Y_f^d =$$

In whatever ways one tries to interchange the positions of vertices and arrows, it is impossible to make the diagrams equivalent.

IFIC, CSIC/University of Valencia

э.

¹²Branco, Rebelo, Silva-Marcos 2005

Beyond diagrams

- Each diagram can be expressed via a matrix m where m_{ij} denotes the number of arrows from the *i*-th tensor to the *j*-th tensor.
- Example:

$$I_1 \equiv Y_c^e Y_d^f Z_{ae}^{ab} Z_{bf}^{cd} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$

- For an arbitrary invariant, this matrix can be obtained from the permutation σ that defines the invariant
- A CP transformation interchanges upper and lower indices \Leftrightarrow inverts the direction of arrows \Leftrightarrow transposes the matrix m

Thomas Neder

Symmetries of diagrams in terms of matrices

- Diagrams are symmetric under permutations of the positions of vertices of the same type
- For an invariant with $m_Y Y$ tensors and $n_Z Z$ tensors, this means that for all $\sigma^Y \in S_{m_Y}$ and $\sigma^Z \in S_{n_Z}$, the matrices

$$\begin{pmatrix} \sigma_Y & 0 \\ 0 & \sigma_Z \end{pmatrix} m \begin{pmatrix} \sigma_Y & 0 \\ 0 & \sigma_Z \end{pmatrix}^T$$

define identical invariants.

From this follows

Invariant CP-even
$$\Leftrightarrow m^T = \begin{pmatrix} \sigma_Y & 0 \\ 0 & \sigma_Z \end{pmatrix} m \begin{pmatrix} \sigma_Y & 0 \\ 0 & \sigma_Z \end{pmatrix}^T$$
,

- (Above expressions are for explicit CP violation. For spont. CPV, c.f. the paper.)
- The search for invariants then went as follows: Generate all matrices m, reduce to classes, test for CP-oddness.

IFIC, CSIC/University of Valencia

э.

Thomas Neder

Applications and Examples for explicit violation of CP

- A systematic search was performed and it was found there are for $m_Y = 0$ (for $m_Y \neq 0$ also a variety of invariants exist)
- no CP-odd invariants with n_Z up to 4
- only 3 "independent" CP-odd invariants with $n_Z = 5$
- only 5 "independent" CP-odd invariants with $n_Z = 6$.
- One of the most useful invariants is

$$I_2^{(6)} = Z_{a_7 a_{10}}^{a_1 a_2} Z_{a_{11} a_6}^{a_3 a_4} Z_{a_9 a_8}^{a_5 a_6} Z_{a_3 a_{12}}^{a_7 a_8} Z_{a_5 a_4}^{a_9 a_{10}} Z_{a_1 a_2}^{a_{11} a_{12}} =$$

- As example potentials we considered the general 2HDM; 3HDM and 6HDM invariant under A_4 , S_4 , $\Delta(27)$, $\Delta(54)$, or all larger $\Delta(3n^2)$ and $\Delta(6n^2)$ groups.
- We analysed the CP situation in many of those models for the first time, many new sources of (explict) CPV, full results see table in paper.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Thomas Neder

Results for explicit CP-violation

	$I_2^{(6)}$	$I_{3}^{(6)}$	$I_{4}^{(6)}$	$I_{5}^{(6)}$	CP
$(3_{A_4}, 1_{SU(2)_L})$	0	0	0	0	Eq. (4.5)
$(3_{A_4}, 2_{SU(2)_L})$	0	0	0	0	Eq. (4.10)
$2 \times (3_{A_4}, 1_{SU(2)_L})$	*	*	*	*	NA
$2 \times (3_{A_4}, 2_{SU(2)L})$	*	*	*	*	NA
$(3_{\Delta(27)}, 1_{SU(2)_L})$	0	0	Eq. (5.3)	Eq. (5.3)	NA
$(3_{\Delta(27)}, 2_{SU(2)_L})$	0	0	Eq. (5.13)	Eq. (5.13)	NA
$2 \times (3_{\Delta(27)}, 1_{SU(2)_L})$	*	*	*	*	NA
$2 \times (3_{\Delta(27)}, 2_{SU(2)_L})$	*	*	*	*	NA
$(3_{\Delta(3n^2)}, 1_{SU(2)_L})$	0	0	0	0	Eq. (4.5)
$(3_{\Delta(3n^2)}, 2_{SU(2)_L})$	0	0	0	0	Eq. (4.10)
$2 \times (3_{\Delta(3n^2)}, 1_{SU(2)_L})$	Eq. (6.5)	*	*	*	NA
$2 \times (3_{\Delta(3n^2)}, 2_{SU(2)L})$	*	*	*	*	NA
$(3_{S_4}, 1_{SU(2)_L})$	0	0	0	0	CP_0 & Eq. (4.5)
$(3_{S_4}, 2_{SU(2)_L})$	0	0	0	0	CP_0 & Eq. (4.10)
$2 \times (3_{S_4}, 1_{SU(2)_L})$	0	0	0	0	CP_0 & Eq. (4.15)
$2 \times (3_{S_4}, 2_{SU(2)L})$	0	0	0	0	CP_0 & Eq. (4.20)
$(3_{\Delta(54)}, 1_{SU(2)_L})$	0	0	*	*	NA
$(3_{\Delta(54)}, 2_{SU(2)_L})$	0	0	*	*	NA
$2 \times (3_{\Delta(54)}, 1_{SU(2)_L})$	0	*	*	*	NA
$2 \times (3_{\Delta(54)}, 2_{SU(2)_L})$	*	*	*	*	NA
$(3_{\Delta(6n^2)}, 1_{SU(2)_L})$	0	0	0	0	CP_0 & Eq. (4.5)
$(3_{\Delta(6n^2)}, 2_{SU(2)_L})$	0	0	0	0	CP_0 & Eq. (4.10)
$2 \times (3_{\Delta(6n^2)}, 1_{SU(2)_L})$	0	0	0	0	CP_0 & Eq. (4.15)
$2 \times (3_{\Delta(6n^2)}, 2_{SU(2)_L})$	0	0	0	0	<i>CP</i> ₀ & Eq. (4.20)

Table 1: Summary of CPIs and (if applicable) CP symmetry transformations for scalar potentials with discrete symmetry.

IFIC, CSIC/University of Valencia

∃ 990

Thomas Neder

Invariants for spontaneous CP violation

Additional diagrammatic rules:

$$X^{a\dots}_{\dots}v_a = \bullet \longrightarrow \mathsf{X}$$

and

Thomas Neder

$$X_{a..}^{..}v^{*a} = \bullet \longrightarrow \mathsf{X}$$

- Again, a systematic search for invariants using the symmetries of the diagrams was performed and various new useful invariants were found.
- Example of a useful invariant

$$J_1^{(3,2)} \equiv Z_{a_4a_5}^{a_1a_2} Z_{a_2a_6}^{a_3a_4} Z_{a_7a_8}^{a_5a_6} v_{a_1} v_{a_3} v^{*a_7} v^{*a_8} =$$

- Again, we analyzed 24 example models with 3 or 6 Higgs fields, many for the first time, and found new sources of spontaneous CPV and for N = 6 new sources of **geometric** CPV.
- But, finding global minima of potentials with more than two non-zero vev components can be non-trivial.

IFIC, CSIC/University of Valencia

3

Minimizing complicated Multi-Higgs-Potentials (1)

- Previously, only for the 3HDM with discrete symmetries, global minima had been obtained systematically.¹³
- We employed a symmetry-based method: Consider a potential

$$V = V_G + V_H$$
 with $H \subset G$

All minima of potentials generally fall into so-called orbits

$$[v_i]_H = \{H \cdot v_i\}$$

• Now consider the sub-potential V_G separately, it has minima in orbits

$$[v_i]_G = \{G \cdot v_i\}$$

- Consider V_H as terms that explicitly break G to H.
- By this, the of orbits of V_G are now split into several orbits organized by H.

¹³Ivanov, Nishi, 2014

Thomas Neder

CP-odd invariants for multi-Higgs models and applications with discrete symmetry: explicit, spontaneous, and geomet

Minimizing complicated Multi-Higgs-Potentials (2)

- In other words, by H degrees of freedom that were unphysical under G, are made physical.
- Now only the part of the potential that depends on those new dof has to be minimized, which is normally analytically possible.
- The minima so obtained are non-trivial, guaranteed to be global minima, and are often stable against parameter perturbations (=geometric).
- One would assume that the list of new minima so obtained is incomplete, but surprisingly, this method reproduces analytically the results for 3HDM identically.
- These are the first more systematic and analytical results for 6HDM.
- Conjecture that there is a symmetry reason for the completeness of the list of minima found because of special relations between groups considered.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Thomas Neder

	$J^{(3,2)}$	$J^{(3,3)}$	CP	SCPV
$3_{\Delta(3n^2)=\Delta(6n^2)}$	0	0	X_0, X_{23}	No
3_{A_4}	0	*	X ₂₃	No
3_{S_4}	0	*	X_0, X_{23}	No
$3_{\Delta(27)=\Delta(54)}$	*	*	None	NA
$3_{\Delta(27)=\Delta(54)}, X_0$	*	*	X_0	S(G)CPV
$3_{\Delta(27)=\Delta(54)}, X_4$	*	*	X_4	S(G)CPV

	$J^{(3,2)}$	$J^{(3,3)}$	CP	SCPV
$2 \times 3_{\Delta(3n^2)}$	*	*	None	NA
$2 \times 3_{\Delta(3n^2)}, CP_0$	*	*	X_0	S(G)CPV
$2 \times 3_{\Delta(3n^2)}, CP_{23}$	*	*	X ₂₃	S(G)CPV
$2 \times 3_{\Delta(3n^2)}, CP_X$	*	*	X'	S(G)CPV
$2 \times 3_{\Delta(6n^2)}$	0	*	X_0, X_{23}	No
$2 \times 3_{A_4}$	*	*	None	NA
$2 \times 3_{A_4}, CP_0$	*	*	X_0	S(G)CPV
$2 \times 3_{A_4}, CP_{23}$	*	*	X ₂₃	S(G)CPV
$2 \times 3_{S_4}$	0	*	X_0, X_{23}	No
$2 \times 3_{\Delta(27)}$	*	*	None	NA
$2 \times 3_{\Delta(27)}, CP_0$	*	*	X_0	S(G)CPV
$2 \times 3_{\Delta(54)}$	*	*	None	NA
$2 \times 3_{\Delta(54)}, CP_0$	*	*	X_0	S(G)CPV

<ロト < 部ト < 目ト < 目ト 目 ののの IFIC, CSIC/University of Valencia

Thomas Neder

Summary of Results, Conclusions and Outlook (1)

- Additional Sources of CP violation beyond the SM are needed.
- A straightforward source can be an extended scalar sector.
- Besides that, most SM-extensions require an extended scalar sector.
- It is non-trivial to determine if CP is violated in such potentials.
- CP-odd basis invariants provide a model-independent tool for determining the CP properties of scalar potentials.
- Diagrammatic methods are helpful in finding CP-odd invariants.
- We further developed these methods and provide an algorithm to enable a systematic search for **all** invariants up to a given order by exploiting symmetries of diagrams.
- We performed such a search up to a specific order and found new non-zero CP-odd invariants for all potentials considered.
- Some of these invariants immediately provided new information about the CP situation in new and known potentials.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

CP-odd invariants for multi-Higgs models and applications with discrete symmetry: explicit, spontaneous, and geomet

Summary of Results, Conclusions and Outlook (2)

- Furthermore, we analyse 24 example potentials for spontaneous breaking of CP
- For minimizing those potentials with up to 6 Higgs fields, we conjecture a method based on the symmetries of vev orbits.
- We find or exclude spontaneous CPV for all those models and
- Find new instances of geometric CPV.
- We also conjecture a relation between instances of geometric CPV and certain preserved CP-type symmetries and positively test it for all models considered.

Outlook

- Symmetries of diagrams as theoretical tool: Basis of invariants; Relation between invariance group and CPV; Relation between explicit and spontaneous CPV; New methods for minimizing potentials; Systematically express Observables by CPIs; etc; Eventually re-write physics in terms of invariants of internal symmetries/basis transformations.
- Could the CP violation found explain the baryon asymmetry?

・ロマ・白マ・山マ・山マ・ (日・

Thomas Neder

IFIC, CSIC/University of Valencia

BACKUP

Thomas Neder

IFIC, CSIC/University of Valencia

Multi-Higgs-Potentials: Standard form

Any even scalar potential can be written in a standard form:

$$V = \phi^{*a} Y_a^b \phi_b + \phi^{*a} \phi^{*c} Z_{ac}^{bd} \phi_b \phi_d$$

• For N SM-singlets:

$$\phi = (\varphi_1, \dots, \varphi_N)$$
 and $\phi^* = (\varphi_1^*, \dots, \varphi_N^*)$

• For n Higgs-doublets:

$$\phi = (\varphi_1, \varphi_2, \dots, \varphi_{2n-1}, \varphi_{2n}) = (h_{1,1}, h_{1,2}, \dots, h_{n,1}, h_{n,2})$$

By construction, Z_{ac}^{bd} is symmetric under $b \leftrightarrow d$ and/or $a \leftrightarrow c$.

Thomas Neder

<ロ > < 回 > < 回 > < 目 > < 目 > < 目 > 目 の Q (~ IFIC, CSIC/University of Valencia

Multi-Higgs-Potentials: Symmetry and basis transformations

• The potential is invariant under symmetry transformations. With

$$\begin{split} \phi_a &\mapsto \left[\rho(g) \right]_a^{a'} \phi_{a'}, \\ Y_a^b &= \rho_a^{a'} Y_{a'}^{b'} \rho^\dagger_{b'} \\ Z_{ac}^{bd} &= \rho_a^{a'} \rho_c^{c'} Z_{a'c'}^{b'd'} \rho^\dagger_{b'} \rho^\dagger_{d'} \end{split}$$

Basis transformations on the other hand change the potential but should not change the physics described by it. With

$$\phi_a \mapsto V_a^{a'} \phi_{a'}$$

the couplings of the potential transform as

$$Y_a^b \mapsto V_a^{a'} Y_{a'}^{b'} V_{b'}^{\dagger b} \text{ and}$$
$$Z_{ac}^{bd} \mapsto V_a^{a'} V_c^{c'} Z_{a'c'}^{b'd'} V_{b'}^{\dagger b} V_{d'}^{\dagger d'}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Thomas Neder

Multi-Higgs-Potentials: CP transformations

Complex conjugation interchanges positions of upper and lower indices

$$\phi_a \mapsto (\phi_a)^* \equiv {\phi^*}^a$$

• Reality of the potential, $V = V^*$, results in

$$(Y_b^a)^* = Y_a^b$$
 and $(Z_{bd}^{ac})^* = Z_{ac}^{bd}$

(These equations are not between tensors but between tensor components.)

• (General) CP transformations combine basis transformations and complex conjugation:

$$\phi_a \mapsto \phi^{*a'} U^a_{a'}$$

Under which the couplings transform as

$$\begin{split} Y^b_a &\mapsto U^{a'}_a \, (Y^{b'}_{a'})^* \, U^{\dagger}{}^b_{b'} \\ Z^{bd}_{ac} &\mapsto U^{a'}_a U^{c'}_c \, (Z^{b'd'}_{a'c'})^* \, U^{\dagger}{}^b_{b'} U^{\dagger}{}^d_{d'} \end{split}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

CP-odd invariants for multi-Higgs models and applications with discrete symmetry: explicit, spontaneous, and geomet

Basis invariants: examples with Y

- Any product of Y and Z tensors where all indices are correctly contracted forms a basis invariant.
- Simplest example: Y_a^a
- With two Y tensors: $Y_a^a Y_b^b = (Y_a^a)^2$ and $Y_b^a Y_a^b$
- These correspond to possible permutations of indices:

$$Y_a^a Y_b^b \Leftrightarrow a \mapsto a \text{ and } b \mapsto b$$

and

$$Y_b^a Y_a^b \Leftrightarrow a \mapsto b \text{ and } b \mapsto a$$

Formally:

$$Y^a_{\sigma(a)}Y^b_{\sigma(b)}$$
 with $\sigma \in S_2$

- Continues like that: $Y^a_{\sigma(a)}Y^b_{\sigma(b)}Y^c_{\sigma(c)}$ with $\sigma \in S_3$ etc
- These correspond to products of traces of powers of Y.
- Many larger invariants are not independent.

<ロト < 部ト < ヨト < ヨト ヨ のので IFIC, CSIC/University of Valencia

CP-odd invariants for multi-Higgs models and applications with discrete symmetry: explicit, spontaneous, and geomet

Basis invariants: examples with Z

- One Z tensor: $Z^{ab}_{\sigma(a)\sigma(b)}$ with $\sigma \in S_2$
- \blacksquare Explicitly: Z^{ab}_{ab} and Z^{ab}_{ba}

Thomas Neder

- Thanks to an internal symmetry, these are identical.
- Two Z tensors: $Z^{ab}_{\sigma(a)\sigma(b)}Z^{cd}_{\sigma(c)\sigma(d)}$ with $\sigma \in S_4$
- Only two combinations are new and can be chosen to be $Z_{bd}^{ab}Z_{ac}^{cd}$ and $Z_{cd}^{ab}Z_{ab}^{cd}$

IFIC, CSIC/University of Valencia

-

Basis invariants: General expression and CP

• A general invariant from $m_Y Y$ and $n_Z Z$ tensors can be written as

$$I_{\sigma}^{(n_Z,m_Y)} \equiv Y_{\sigma(a_1)}^{a_1} \dots Y_{\sigma(a_{m_Y})}^{a_{m_Y}} Z_{\sigma(b_1)\sigma(b_2)}^{b_1b_2} \dots Z_{\sigma(b_{2n_Z-1})\sigma(b_{2n_Z})}^{b_{2n_Z-1}b_{2n_Z}} \text{ with } \sigma \in S_{m_Y+2n_Z}$$

- All of the simplest examples from the previous slides were CP-even
- Recall how a CP transformation acts on Y and Z: Upper and lower indices are interchanged and the tensors are multiplied with basis transformations.
- In a basis invariant, basis transformations cancel and the CP-conjugate can be obtained by interchanging upper and lower indices:

$$[I_{\sigma}^{(n_Z,m_Y)}]^* = Y_{a_1}^{\sigma(a_1)} \dots Y_{a_{m_Y}}^{\sigma(a_{m_Y})} Z_{b_1 b_2}^{\sigma(b_1)\sigma(b_2)} \dots Z_{b_{2n_Z}-1b_{2n_Z}}^{\sigma(b_{2n_Z}-1)\sigma(b_{2n_Z})}$$

• The CP-odd part of any invariant can then be extracted:

$$\mathcal{I} = I - I^*$$

Thomas Neder

IFIC, CSIC/University of Valencia

Example diagrams for small invariants

Note that all these diagrams do not change when inverting arrows, which means that the corresponding invariants are all CP-even.

・ロト ・回ト ・ヨト ・ヨト ・ヨー うらの

Thomas Neder

IFIC, CSIC/University of Valencia

Larger CP-odd examples

- A systematic search (with methods still to be explained) was performed and it was found there are for $m_Y = 0$ (for $m_Y \neq 0$ also a variety of invariants exist)
- no CP-odd invariants with n_Z up to 4
- only 3 different CP-odd invariants with $n_Z = 5$
- only 5 different CP-odd invariants with $n_Z = 6$.
- Two of the most useful invariants are

IFIC, CSIC/University of Valencia

Thomas Neder

and

Example potentials considered

As example potentials we considered

 \blacksquare the most general 2HDM, where known results from the literature were reproduced by the automatic search 14

and all potentials of

- one triplet of SM singlets
- one triplet of SM Higgs doublets
- two triplets of SM singlets
- two triplets of SM Higgs doublets

for the triplet representations from A_4 , S_4 , $\Delta(27)$, $\Delta(54)$, or all larger $\Delta(3n^2)$ and $\Delta(6n^2)$ groups. (And occasional U(1) symmetries to eliminate unwished for cross-terms.)

- \blacksquare $\Delta(3n^2)$ and $\Delta(6n^2)$ groups have a particular position among flavour symmetries 15
- and even if they turn out to be unphysical, they are a rich group theoretical laboratory for testing ideas and methods

Thomas Neder

IFIC, CSIC/University of Valencia

 $^{^{14}}$ Gunion, Haber 2005

¹⁵TN, King, Stuart, Luhn, Ding, Medeiros Varzielas, Altarelli, Feruglio, Hagedorn, Ziegler, Grimus, Fonseca, ...

Interesting example invariants

• one triplet of $\Delta(27)$:

$$\mathcal{I}_{4,5}^{(6)} = -\frac{3}{32} \left(d^3 - d^{*3} \right) \left(d^3 + 6dd^*s + d^{*3} - 8s^3 \right)$$

• two triplets of $\Delta(3n^2)$ for n > 3:

$$\mathcal{I}_{2}^{(6)} = \frac{3}{512}is_{2}s_{3}(-3r_{2}^{2} + s_{3}^{2})(-s_{1}^{2} + s_{1}s_{2} + r_{2}(-2s_{1} + s_{2}) + s_{3}^{2})$$

IFIC, CSIC/University of Valencia

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

CP-odd invariants for multi-Higgs models and applications with discrete symmetry: explicit, spontaneous, and geomet

Spontaneous CP Violation: Definitions

• VEVs transform as vectors under basis transformations:

$$v_a \mapsto V_a^{a'} v_{a'} , v^{*a} \mapsto v^{*a'} V_{a'}^{\dagger a} .$$

• With this, invariants (Jnvariants) with VEVs can be written as

$$J_{\sigma}^{(n_v,m_Y,n_Z)} \equiv W_{\sigma(w_1)...\sigma(w_{n_v})}^{w_1...w_{n_v}} Y_{\sigma(a_1)}^{a_1} \dots Y_{\sigma(a_{m_Y})}^{a_{m_Y}} Z_{\sigma(b_1)\sigma(b_2)}^{b_1b_2} \dots Z_{\sigma(b_{2n_Z}-1)\sigma(b_{2n_Z})}^{b_{2n_Z}-1b_{2n_Z}}$$

with
$$W^{w_1...w_{n_v}}_{w'_1...w'_{n_v}} = v_{w'_1}...v_{w'_{n_v}}v^{*w_1}...v^{*w_{n_v}}.$$

Additional diagrammatic rules:

and

$$X_{a..}^{..}v^{*a} = \bullet \longrightarrow \mathsf{X}$$

<ロト < 部ト < ヨト < ヨト ヨ のへや IFIC, CSIC/University of Valencia

CP-odd invariants for multi-Higgs models and applications with discrete symmetry: explicit, spontaneous, and geomet

Spontaneous CP Violation: Equations of Motion

Now, the minimisation condition can be expressed in term of diagrams:

$$0 = \frac{\partial V}{\partial \phi_e} = \phi^{*a} Y_a^e + 2\phi^{*a} \phi^{*c} Z_{ac}^{ed} \phi_a$$

becomes

<ロ > < 回 > < 回 > < 目 > < 目 > < 目 > 目 の Q (~ IFIC, CSIC/University of Valencia

Thomas Neder

Spontaneous CP Violation: Example Diagrams

$$J_{1}^{(2,2)} \equiv Z_{a_{1}a_{3}}^{a_{1}a_{2}} Z_{a_{5}a_{6}}^{a_{3}a_{4}} v_{a_{2}} v_{a_{4}} v^{*a_{5}} v^{*a_{6}} = \checkmark$$

<ロ ト く 日 ト く 目 ト く 目 ト 目 の Q (~ IFIC, CSIC/University of Valencia

Thomas Neder

Spontaneous CP Violation: A $\Delta(27)$ example

$$\begin{split} \mathcal{J}_{1}^{(3,2)} = & \frac{1}{4} (d^{*3} - d^{3}) (|v_{1}|^{4} + |v_{2}|^{4} + |v_{3}|^{4} - 2|v_{1}|^{2}|v_{2}|^{2} - 2|v_{1}|^{2}|v_{3}|^{2} - 2|v_{2}|^{2}|v_{3}|^{2}) \\ &+ \frac{1}{2} (dd^{*2} - 2d^{*}s^{2} + d^{2}s) (v_{2}v_{3}v_{1}^{*2} + v_{1}v_{3}v_{2}^{*2} + v_{1}v_{2}v_{3}^{*2}) \\ &- \frac{1}{2} (d^{2}d^{*} - 2ds^{2} + d^{*2}s) (v_{2}^{*}v_{3}^{*}v_{1}^{2} + v_{1}^{*}v_{3}^{*}v_{2}^{2} + v_{1}^{*}v_{2}^{*}v_{3}^{2}) \end{split}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

CP-odd invariants for multi-Higgs models and applications with discrete symmetry: explicit, spontaneous, and geomet

Summary: CP-odd Invariants

- Additional Sources of CP violation beyond the SM are needed
- A straightforward source can be an extended scalar sector
- Besides that, most SM-extensions require an extended scalar sector
- It is non-trivial to determine if CP is violated in such potentials
- CP-odd basis invariants provide a model-independent tool for determining the CP properties of scalar potentials
- Diagrammatic methods are helpful in finding CP-odd invariants
- We further developed these methods to enable a systematic search for *all* invariants up to a given order by exploiting symmetries of diagrams
- We performed such a search up to a specific order and found new non-zero CP-odd invariants for all potentials considered
- Some of these invariants immediately provided new information about the CP situation in new and known potentials

IFIC, CSIC/University of Valencia

∃ nar

CP-odd invariants for multi-Higgs models and applications with discrete symmetry: explicit, spontaneous, and geomet

Outlook

CP-odd invariants

- Next Paper: Apply this machine to spontaneous CP violation (so far only $\Delta(27)$ as minimal working example)
- Trilinear terms?
- Fermions?
- Symmetries of diagrams as theoretical tool: Basis of invariants; Relation between invariance group and CPV; Relation between explicit and spontaneous CPV; New methods for minimizing potentials; etc; Eventually re-write physics in terms of invariants of internal symmetries.

• Could the CP violation found above explain the baryon asymmetry?

IFIC, CSIC/University of Valencia

э.

(日) (同) (日) (日)

Thomas Neder