Search for New Physics with Boosted Tau Pairs

David Kirchmeier 16th Block Course of the GRK 1504 "Mass, Spectrum, Symmetry" 13 Mar 2017

- Since discovery of h significant progress in measuring its coupling strengths, spin and CP properties
- X = SM Higgs boson h
 = Heavy Higgs boson H
 = Graviton G^{*}_{KK}

Tau Lepton Decay

- Higgs decay in tau pairs with third highest branching ratio
- Hadronic mode with 65% BR
- Reconstruction of τ_{had} based on jet seeds
- QCD jet background separation achieved with Boosted Decision Trees

Tau Lepton Decay

Decay in Boosted Tau Pairs

Single Tau Reconstruction

- Standard tau reconstruction in ATLAS is based on anti- k_T algorithm with distance parameter R = 0.4
- Tau pairs closer than $\Delta R = 0.4$ tend to merge into one tau candidate

Di-Tau Reconstruction

Di-Tau Reconstruction

- High-p_T anti-k_T jet seeds (R = 1.0, $p_T > 300$ GeV)
- Anti- k_T subjets (R = 0.2)
- At least 2 subjets with at least one associated track
- Track and primary vertex association
- Calorimeter cell based identification variable calculation

Di-Tau Reconstruction

Energy and Track Reconstruction

- Energy accuracy ~2 %
- Efficiency of correct reconstruction of track multiplicity ~67%-80%

Di-tau signal

QCD background

- Multivariate QCD background separation using Boosted Decision Trees
- Combines tracker and calorimeter information within 17 variables

n^{lead}

- Signal: G \rightarrow hh \rightarrow 4T MC samples, M_G = 1500-2500 GeV
- Background: 13 TeV 2015 data

Summary and Outlook

- New method for reconstructing boosted tau pairs
- High background suppression, not only for QCD jets
- Systematic uncertainties need to be determined (e.g. on identification efficiency and energy scale)
- Expanding existing $hh \rightarrow bb\tau\tau$ analysis with boosted category

THANK YOU FOR YOUR ATTENTION

Di-Tau Track Reconstruction

Event Selection for DiTaulD

Di-Tau Signal

• G \rightarrow hh \rightarrow 4 τ MC samples:

MadGraphPythia8EvtGen_A14NNPDF23LO_RS_G_hh_4tau_c10_M1500 MadGraphPythia8EvtGen_A14NNPDF23LO_RS_G_hh_4tau_c10_M1750 MadGraphPythia8EvtGen_A14NNPDF23LO_RS_G_hh_4tau_c10_M2000 MadGraphPythia8EvtGen_A14NNPDF23LO_RS_G_hh_4tau_c10_M2250 MadGraphPythia8EvtGen_A14NNPDF23LO_RS_G_hh_4tau_c10_M2500

QCD Jet Background

- 13 TeV 2015 data: data15_13TeV.periodAllYear_DetStatus-v75repro20-01_DQDefects-00-02-02_PHYS_StandardGRL_All_Good .xml
- GRL and jet cleaning
- Flat p_T re-weighting
- Mix of high-p_T jet triggers
- Ditau $p_T > 200 \text{ GeV}, |\eta| < 2.5$

→ 300 k boosted di-taus

→ 13 M di-tau candidates

Block Course Rathen, 13 Mar 2017

Correlation Background

Correlation Signal

Uncertainties

Block Course Rathen, 13 Mar 2017