Top physic topics of ATLAS groups in Bonn

Ian Brock, Markus Cristinziani, Birte Domnik, Marc Lehmacher, Serge Duarte Pinto, <u>Duc Bao Ta</u>, Norbert Wermes

universität**bonn**

Top physic topics

- Group Wermes/Cristinziani
- Top physics in dileptonic final state:
 - Birte Domnik
 - Mass measurement using the lifetime of b-hadrons
 - Marc Lehmacher
 - B-tagging studies
 - Later: cross section measurement with b-tagging
 - Duc Bao Ta
 - Cross section measurement without b-tagging

New members

- Group Brock
 - 1 PhD Student: Serge Duarte Pinto

B-tagging studies

- Improving b-tagging by studying influence of
 - Track selection
 - Number of hits in B-layer
 - Rejection of tracks from material interactions in Pixel detector
 - Inefficiencies of Pixel detector
 - Performance at large η , p_T
- Experience will be used for cross section measurement with b-tagging

Improving b-tagging with track selection

• With ttbar (MC@NLO) sample:

 Waiting for more statistics from the central production universitätbonn

Mass measurement using the lifetime of bhadrons in dilepton channel

Makes use of the mean life time of b-hadrons:

$$t \to Wb$$

$$p_{b/W} \propto f(m_t) \qquad \left\langle L_{xy} \right\rangle = c \tau_0 \sqrt{\left(\frac{\left\langle E_T \right\rangle}{m_b c^2}\right)^2}$$

$$\left\langle L \right\rangle = \tau_0 \frac{p}{m_b}$$

In truth:

 $t \rightarrow Wb$

transverse decay length

Calculation of a mass estimator

- Largest uncertainties:
 - X_b fragmentation function
 - inclusive b-hadron lifetime
 - ISR effects
- Investigation of the feasibility with a realistic model of the ATLAS detector

decay length

Cross section measurement without b-tagging

- Using a likelihood to determine the excess of the signal over the background
- Considered samples, fullsim (later: trigger and misaligned detector)
 - Signal: ttbar dileptonic final state (including taus) (MC@NLO)
 - Background:
 - ttbar semileptonic
 - Z->II (MC@NLO)
 - WW, WZ, ZZ (MC@NLO, Herwig)
- Do pre-selection cuts:
 - Require 2 isolated leptons (ΔR >0.4) of opposite charge
 - Veto on events in the Z peak region (85-95 GeV) (only for ee and µµ final state)
 - Number of Jets >=2
 - MET 25GeV, Lepton 0/1: 20GeV

Selection in ee

- cuts on jets: 35/25 GeV
- Efficiency 2.7% (without jet==1 bin)
- S/B 3.7 at S/sqrt(S+B) 12.5 (100pb⁻¹)

Selection in eµ

- cuts on jets: 30/25 GeV
- Efficiency 7.1% (without jet==1 bin)
- S/B 5.8 at S/sqrt(S+B) 23.3 (100pb⁻¹)

Selection in µµ

- cuts on jets: 30/25 GeV
- Efficiency 4.1% (without jet==1 bin)
- S/B 2.6 at S/sqrt(S+B) 15.4 (100pb⁻¹)

- Optimization still limited by statistics, esp. for background:
 - Z->II only a few events scaled up by factor O(10) for 100pb⁻¹
 - not enough for sensible pdfs
- Statistics expected to increase with new centrally produced samples (CSC12)
- Ideas to increase purity:
 - Quasi-reconstruction of the kinematics under the assumption of top mass and W mass, may use best fitting top mass as one likelihood variable

