LHC-D Top Physics Workshop 2007: Introductory Remarks (Theory)

Werner Bernreuther RWTH Aachen

Physics Issues:

- \bullet Unique opportunity to investigate interactions of a bare quark at E \sim a few 100 GeV
- Dynamics of top production and decay is not explored very precisely so far

•Basic tasks at/for LHC: $\sigma(t\bar{t})$, $\sigma(t)$, $\sigma(\bar{t})$ Profile: mass, charge, spin, decay modes

• New decay modes besides $t \to W + b$? $t \to \tilde{t} \dots$, FCNC decays $t \to c$? or sizeable FCNC in top production: $pp \to t\bar{c}X$?

• Excellent probe of mechanism of electroweak gauge-symmetry breaking, heavy (Higgs) resonances that strongly couple to top?

- Good probe also for non-SM parity and/or non-SM CP violation (induced, e.g., by non-standard Higgs bosons)
- Hints of a substructure ?

• • • •

Strong (and electroweak) interactions of top quarks can be reliably predicted – asset!

Top Decays in SM

$$\mathbf{t} \rightarrow \mathbf{W} + \mathbf{b} \rightarrow \begin{cases} \ell + \nu_\ell + \mathbf{b} \\ \mathbf{q} + \bar{\mathbf{q}}' + \mathbf{b} \end{cases}$$

Basic issue: determining the structure of the tbW vertex (V-A charged current in SM):

Experiment: W helicity analysis; ℓ , b-jet distributions,...

Theory:

• Predictions for $t \to W^+(h_W = -1, 0, +1)$ including QCD & EW corrections (Do et al. (2003))

• Predictions for decay distributions, including QCD corr., of polarized top decay into semileptonic (Czarnecki, Jezabek, Kühn) and non-leptonic (Brandenburg, Si, Uwer) channels

 \rightarrow see talk by J. Körner

QCD radiation in t decay included into MC codes (?) \rightarrow see talk by S. Gieseke

$t\bar{t}$ Production at Tevatron and LHC:

main reactions (according to SM):

$$p\bar{p}, pp \rightarrow t\bar{t}X \rightarrow \begin{cases} 2\ell + n \ge 2 \text{ jets} + P_T^{\text{miss}} \\ \ell + n \ge 4 \text{ jets} + P_T^{\text{miss}} \\ n \ge 6 \text{ jets} \end{cases}$$

 $t\bar{t}$ production dominated by strong interactions: $q\bar{q} \rightarrow t\bar{t}$, $gg \rightarrow t\bar{t}$, \cdots weak decays of t and \bar{t} : $t \rightarrow b\ell\nu_{\ell}$ (semileptonic), $t \rightarrow bq\bar{q}'$ (non-leptonic) $BR(2\ell): BR(\ell + jets): BR(jets) \simeq 0.05: 0.30: 0.46$ for $\ell = e, \mu$

Tevatron: $\sigma(t\bar{t})_{exp} = 7.3 \pm 0.9$ pb, i.e., $\delta\sigma_{exp} \sim 12\%$

at LHC: $\sigma(t\bar{t})\sim 800$ pb, experimental goal: $\delta\sigma(t\bar{t})_{exp}\sim 5\%$

Status of Theory:

spin-averaged cross sections $\sigma(pp, p\bar{p} \rightarrow t\bar{t}X)$, $d\sigma/dp_T$, ... known to order α_s^3 + resummation of "threshold logarithms" $\alpha_s^3 \left[\frac{\ln(1-z)}{1-z}\right]_+$, $z = Q^2/\hat{s}$ Bonciani et al.; Kidonakis et al.; Cacciari et al.; ... Predictions for the Tevatron including estimate of PDF and scale uncertainties: $\delta\sigma(t\bar{t})_{th} \sim 10\%$ (Kidonakis, Vogt; Cacciari et al.; ...)

NLO MC generators for $t\bar{t}$ production: MC@NLO, MCFM

Recently: complete calculation of the weak interaction corrections of order $\alpha_W \alpha_s^2$ to $t\bar{t}$ production (Kühn, Scharf, Uwer; W.B., Fücker, Si) not important for $\sigma(t\bar{t})$, but relevant for distributions \rightarrow talk by A. Scharf

With these results: update of $\sigma(t\bar{t})_{th}$ for LHC to be done! Does theory uncertainty match expected exp. error?

NNLO QCD corrections necessary? \rightarrow talk by S. Moch

Role of underlying events in top production? i.e., collision of the proton remnants with available c.m. energy $(1 - x_1x_2)s$, 2nd hard collision becomes more likely with increasing $s \rightarrow talk$ by S. Gieseke

NLO predictions at level of t and \overline{t} decay products, including t, \overline{t} spin d.o.f.

Available for partonic final states:

- factorizable NLO QCD corr. (W.B., Brandenburg, Si, Uwer)
- non-factorizable NLO QCD corr.(Beenakker et al., L. Meyer)
- weak interaction corrections

 \rightarrow predictions for (angular) distributions, correlations,... in particular distributions due to $t\bar{t}$ spin correlations

parity-violating effects in $t\bar{t}$ production small according to SM, e.g. longitudinal top polarization but: definite SM prediction \rightarrow for non-SM (SUSY) effects see talk by S. Berge

factorizable

and

non-factorizable corrections

Likewise, for real gluon radiation

Determination of the top mass

experimental goal at LHC: $(\delta m_t)_{exp} \sim 1 \text{ GeV}$

```
At present: D0 at Tevatron, determination of m_t with (tree-level) matrix element method
```

Determination from invariant-mass distribution of top in ℓ + jets channels:

peak of $M_t = \sqrt{(\sum p_i)^2}$ not equal to on-shell mass m_t . Theory: non-factorizable radiative corrections yield shift. At NLO QCD (order α_s^3): small shift $|\Delta m_t| < 100$ MeV, but.....

 \rightarrow talk by A. Hoang

Futher important issue: p_T , $M_{t\bar{t}}$ distributions

For searches of new physics effects, e.g., heavy resonances that couple to $t\bar{t}$, precise SM predictions of $M_{t\bar{t}}$, p_T spectra are necessary, especially for $\ell + jets$ channels. Weak interaction corrections sizeable at large $M_{t\bar{t}}$, p_T (Sudakov logs)

Other useful variables: e.g., "transverse mass"

 $M_T = \sqrt{(p_b + p_\ell + p_{\bar{b}} + p_{j_1} + p_{j_2})^2 + (E_T^{miss})^2} + E_T^{miss}$

Available results are to be put together: p_T , $M_{t\bar{t}}$, M_T distributions including NLO QCD and weak corrections + estimate of scale and PDF uncertainties

Further progress since last meeting:

predictions for $pp \rightarrow t\bar{t} + jet$ to NLO QCD (Dittmaier, Uwer, Weinzierl)

• important background for Higgs boson production by vector boson fusion:

$$\begin{array}{ccc} qq \stackrel{WW,ZZ}{\longrightarrow} qq \ + \ H, \\ & H \rightarrow W^+W^- \rightarrow 4 \ \mathrm{jets}, 2\ell + 2\nu, \dots \end{array}$$

precision of $\sim 10\%$ for background required LO analysis: $t\bar{t}$, $t\bar{t} + n$ jets (n=1,2) (N. Kauer)

• SM "gauge" for the search of new physics contributions to anomalous chromomagnetic moment of t quark:

$$g_s \frac{a_t}{2m_t} \bar{t} \sigma_{\mu\nu} G^{\mu\nu} t$$

 $\delta a_t \sim 0.03$ at LHC

• $t\bar{t} + \gamma$: measurement of el. charge/form factors of t

 \rightarrow see talk by P. Uwer

Single top production:

- weak interactions involved in production; in SM: $\sigma_t \propto |V_{tb}|^2$
- source of polarized tops
- sensitive to non-SM interactions, esp. to FCNC, sizeable production of $t\bar{c}$?

Recent evidence for single top production at Tevatron: D0 collab. (Dec. 2006)

•
$$\sigma_{t\,channel} + \sigma_{s\,channel} + c.c. \ modes = 4.9 \pm 1.4 \ \text{pb}$$

• V - A coupling $|V_{tb}f_{1,L}| = 1.3 \pm 0.2$

- Predictions for differential cross-section at NLO QCD: (Harris et al. (2002));
- incl. semileptonic t decay and non-factorizable QCD corrections (Campbell et al. (2004)) \rightarrow incorporated in the MC codes MC@NLO and MCFM
- Weak interaction corrections to single top production also available (Beccaria et al.)

Conclusion: SM predictions for single top production at LHC in reasonably good shape.

But: single t signal clouded by large backgrounds: $W + b\bar{b}$, W + jets, $t\bar{t}$, ...

See also recent review on top physics by

A. Quadt, Eur. Phys. Journal C 48, 835 (2006)