NLO Q D corrections to $p p / p \bar{p} \rightarrow t \bar{t}+$ jet $+X$

Peter Uwer

LHC-D Workshop 2007-Topquark Physik (II) Bad Honnef, 26.01.2007

Work in collaboration with S. Dittmaier and S. WeinzierI

Contents:

- Introduction / Motivation
- Leading-order results
- Real corrections
- Virtual corrections
- Summary

Introduction / Motivation - Top as signal

Why is top quark physics important?
Top-quark properties and dynamics still not precisely known

- Important signal process at the Tevatron and the LHC
- $\Delta \mathrm{m}_{\mathrm{t}}=1 \mathrm{GeV}$ challenging task, only possible with detailed theoretical predictions
- Important tool to search for new physics

To explore the top quark additional observables useful
$\mathrm{tt}+1$-Jet can be used for

- Search of anomalous top gluon couplings

- Might also be useful for mass determination

Introduction / Motivation - Top as background

Higgs searches at LHC

The WBF process

$$
q q \rightarrow W W q q \rightarrow q q H \xrightarrow{\longrightarrow} \mathrm{WW}
$$

is important over a wide Higgs mass range
Important backgrounds:

channel	$e^{ \pm} \mu^{\mp}$	$w /$ minijet veto	$e^{ \pm} e^{\mp}, \mu^{ \pm} \mu^{\mp}$	$e^{ \pm} e^{\mp}, \mu^{ \pm} \mu^{\mp}$ w/minijet veto
$70<m_{h}<300 \mathrm{GeV}$	1.90	1.69	1.56	1.39
SM, $m_{h}=155 \mathrm{GeV}$	5.60	4.98	4.45	3.96
$t \bar{t}$	0.086	0.025	0.086	0.025
$t \bar{t} j$	7.59	2.20	6.45	1.87
$t \bar{t} j j$	0.83	0.24	0.72	0.21
single-top (tbj)	0.020	0.015	0.016	0.012
$b \bar{b} j j$	0.010	0.003	0.003	0.001
QCD $W W j j$	0.448	0.130	0.390	0.113
EWWW jj	0.269	0.202	0.239	0.179
QCD $\tau \tau j j$	0.128	0.037	0.114	0.033
EW $\tau \tau j j$	0.017	0.013	0.016	0.012
QCD $\ell \ell j j$	-	-	0.114	0.033
EW $\ell \ell j j$	-	-	0.011	0.008
total bkg	9.40	2.87	8.04	2.49
S / B	1/5.0	1/1.7	1/5.1	1/1.8
$L_{5 \sigma}^{\text {obs }}\left[\mathrm{fb}^{-1}\right]$	65	25	82	32
[Alves, Eboli, Plehn, Rainwater '04]				

\rightarrow Precise predictions for $\mathrm{pp} \rightarrow \mathrm{tt}+$ jet are necessary

Introduction / Motivation - Top as test ground

Ideal test ground for developing and testing of new methods for loop calculations

- Top quark physics not just a toy application
- Significant complexity due to
- additional mass scale
- infrared structure still complicated
- large expressions, many diagrams
- ttj may serve as benchmark process for new methods

Top quark physics also useful in the commissioning phase of the experiments

Leading-order results - some features

Sample diagrams:

Partonic processes:

$$
g g \rightarrow t \bar{t} g, \underbrace{q \bar{q} \rightarrow t \bar{t} g, q g \rightarrow t \bar{t} q, g \bar{q} \rightarrow t \bar{t} \bar{q}}_{\text {related by crossing }}
$$

Many different methods for LO exist, we used:

1. Berends-Giele recurrence relation + spinor helicity formalism
2. Feynman-Diagram based approach + spinor helicity formalism
3. Feynman-Diagram based approach + "Standard Matrix Elements"

We also compared with Madgraph...

Leading-order results - some features

Observable: - Cross section for ttbar +1 additional Jet +X

- assume t and tbar as tagged
- to resolve additional jet demand min k_{t} of 20 GeV $\rightarrow \mathrm{k}_{\mathrm{t}}$-cut renders observable IR finite
- in LO no recombination \rightarrow no dependence on jet-alg.
- strong scale dependence of LO result
- Cross section is NOT small

Outline of the NLO calculation

Real corrections

- subtractions

Virtual corrections
 + subtractions

Cancellation of singularities

\downarrow
finite partonic cross sections
V
Phase space integ. PDF convolution, MC

Good: no conceptual issues, bad: no general library available

Conceptually solved \neq practical solution

Issues:

- complexity \rightarrow automatization, efficient algorithms
- numerical efficiency / speed
- numerical stability

If there is a problem somewhere in the phase space Sooner or later you will hit it...

That these issues are indeed non-trivial is reflected in the small number of NLO calculations for $2 \rightarrow 3$ and $2 \rightarrow 4$ proesses

Real corrections

Sample diagrams:

Partonic subprocesses:

$$
\begin{aligned}
& g g \rightarrow t \bar{q} g g, g g \rightarrow t \bar{q} q \bar{q}, g q \rightarrow t \bar{t} g q \\
& g \bar{q} \rightarrow t \bar{q} \bar{q} g, q \bar{q} \rightarrow t \overline{q^{\prime}} \bar{q}^{\prime}, \ldots
\end{aligned}
$$

Related to 3 basic processes

$$
0 \rightarrow t \bar{t} g g g g, t \bar{t} q \bar{q} g g, t \bar{t} q \bar{q} q^{\prime} \bar{q}^{\prime}
$$

Many subprocesses \rightarrow runtime is an issue...
We used again (as in the LO case):

- Berends/Giele recurrence + FDH
- Feynman diagramatic approach + FDH
checked against Madgraph

IR/coll. singularities treated using dipole subtraction formalism

General idea of subtraction method:

\rightarrow Add and subtract a counterterm which is enough to be integrated analytically:

$$
\begin{aligned}
& \int_{0}^{\alpha} d x \frac{1}{x} f(x) x^{\epsilon} \\
= & \int_{0}^{\alpha} d x \frac{1}{x}(f(x)-f(0)) x^{\epsilon}+\frac{1}{x} f(0) x^{\epsilon} \\
= & +\frac{1}{\epsilon} \alpha^{\epsilon}+\int_{0}^{\alpha} \frac{1}{x}(f(x)-f(0))+O(\epsilon)
\end{aligned}
$$

Construction of subtraction for real corrections more involved, Fortunately a general solution exists:
\rightarrow "Catani-Seymour" subtraction formalism

Real corrections: Dipole subtraction method

How it works in practise:

$$
\begin{gathered}
\sigma_{\mathrm{NLO}}=\int_{m+1} \sigma_{\text {real }}+\int_{m} \sigma_{\text {virt. }}+\int d x \int_{m} \sigma_{\text {fact. }}(x) \\
\sigma_{\mathrm{NLO}}=\underbrace{\int_{m+1}\left[\sigma_{\text {real }}-\sigma_{\text {sub }}\right]}_{\text {finite }}+\underbrace{\int_{m}\left[\sigma_{\text {virt. }}+\bar{\sigma}_{\text {sub }}^{1}\right]}_{\text {finite }}+\underbrace{\int d x \int_{m}\left[\sigma_{\text {fact. }}(x)+\bar{\sigma}_{\text {sub }}(x)\right]}_{\text {finite }}
\end{gathered}
$$

Requirements:

$$
\begin{aligned}
& 0=-\int_{m+1} \sigma_{\text {sub }}+\int_{m} \bar{\sigma}_{\text {sub }}^{1}+\int d x \int_{m} \bar{\sigma}_{\text {sub }}(x) \\
& \sigma_{\text {sub }} \rightarrow \sigma_{\text {real }} \text { in all single-unresolved regions }
\end{aligned}
$$

Due to universality of soft and collinear factorization, general algorithms to construct subtractions exist

Real corrections: Some issues

- Subtraction term = sum over dipoles

Dipoles have non-trivial structure in color and spin space,
And there are many of them, i.e. 36 for gg->ttgg
\rightarrow Need general library to calculate subtraction terms

- Accuracy...

Dipole subtraction relies on numerical cancellation
of large numbers !
\rightarrow how precise are the matrix elements in sing. regions?

Virtual corrections

Number of 1-loop diagrams ~ 350 (100) for $g g(q \bar{q})$
Most complicated 1-loop diagrams - pentagons of the type:

Algebraic decomposition of amplitudes:

$$
\begin{aligned}
& \text { color, i.e. } C_{1}=\left(T_{a_{1}} T_{a_{2}} T_{a_{3}}\right)_{\bar{t} t} \\
& \mathcal{A}(g g \rightarrow t \bar{t} g)=\sum_{k, l} f_{k l}\left(\left\{\left(p_{i}, p_{j}\right\}\right) \times \begin{array}{c}
S_{k} \\
\text { standard matrix }
\end{array}\right. \\
& \text { elements, i.e. } S_{1}=\left\langle k_{t}\right| \varepsilon_{1}\left|k_{t}\right\rangle\left(\varepsilon_{2} \cdot \varepsilon_{3}\right) \text {, }
\end{aligned}
$$

\rightarrow Calculation similar to pp $\rightarrow \mathrm{ttH} @ \mathrm{NLO}$

Virtual corrections

Feynmandiagram Generation Feynarts, QGRAF

Steps 1,2,4 more or less standard, no particular difficulties... Step 3 is the tricky part:
How to reduce tensor integrals fast and numerically stable, how to get a finite answer*) in a finite amount of time?

Many methods developed in the last years

Only a few non-trivial examples exist...

Virtual corrections: Reduction of tensor integrals

Four and lower-point tensor integrals:
Reduction à la Passarino-Veltman, with special reduction formulae in singular regions,
\rightarrow two complete independent implementations !
Five-point tensor integrals:

- Apply 4-dimensional reduction scheme, 5-point tensor integrals are reduced to 4-point tensor integrals

\rightarrow No dangerous Gram determinants! [Denner, Dittmaier 02]

Based on the fact that in 4 dimension 5-point integrals can be reduced to 4 point integrals

- Reduction à la Giele and Glover

Results: Checks

- leading-order amplitudes checked with Madgraph
- Subtractions checked in singular regions
- structure of UV singularities checked
- structure of IR singularities checked

In addition:

- two complete independent programs using a complete different tool chain and different algorithms

For example:
virtual corrections:
Feynarts 1.0 - Mathematica - Fortran77
QGraf — Form3 — C,C++

Results:

Summary

- Top quark physics play an important role at the Tevatron an the LHC
- Precise theoretical predictions required for signal and background studies \rightarrow NLO is needed
- NLO calculations for multi (> 2) particle final states still difficult
- NLO corrections to tt + 1 Jet serves as important benchmark process for new methods

Summary

Status of $p p / p \bar{p} \rightarrow t \bar{t}+j e t+X$ at NLO QCD:

- Calculation completed, but not yet fully cross-checked
- Preliminary numerical results shown
- Last checks are running
- Methods can be used to address more complicated processes
- Further improvements possible and underway

Outlook

- Charge asymmetry for the Tevatron (calculated but not yet cross checked)
- Differential distributions for the LHC and Tevatron (Program/algorithm completely flexible)
- If you are interested in specific distribution we should discuss it now...

Virtual corrections: Evaluation of 5-point Tensorintegrals

In 4 dimensions the loop-momentum can be expressed in $p_{1}-p_{4}$:

$$
0=\operatorname{det}\left(\begin{array}{cccc}
2 \ell^{2} & 2 \ell \cdot p_{1} & \ldots & 2 \ell \cdot p_{4} \\
2 p_{1} \cdot \ell & 2 p_{1} \cdot p_{1} & \ldots & 2 p_{1} \cdot p_{4} \\
\vdots & \vdots & \ddots & \vdots \\
2 p_{4} \cdot \ell & 2 p_{4} \cdot p_{1} & \ldots & 2 p_{4} \cdot p_{4}
\end{array}\right)
$$

$\begin{aligned} & \text { To regularize spurious } \\ & \text { UV singularities in individual terms } \\ & \text { [Denner, Dittmaier '02] } \\ & 0=\frac{1}{i \pi^{2}} \int d^{4} \ell \frac{\ell_{\mu_{1}} \cdots \ell_{\mu_{P}}}{N_{0} N_{1} \ldots N_{4}} \frac{-\Lambda^{2}}{\ell^{2}-\Lambda^{2}} \operatorname{det}\left(\begin{array}{cccc}2 \ell^{2} & 2 \ell \cdot p_{1} & \ldots & 2 \ell \cdot 4 \\ 2 p_{1} \cdot \ell & 2 p_{1} \cdot p_{1} & \ldots & 2 p_{1} \cdot p_{4} \\ \vdots & \vdots & \ddots & \vdots \\ 2 p_{4} \cdot \ell & 2 p_{4} \cdot p_{1} & \ldots & 2 p_{4} \cdot p_{4}\end{array}\right) \\ & \text { with } N_{i}=\left(\ell+p_{i}\right)^{2}-m_{i}^{2}+i \varepsilon, p_{0}=0\end{aligned} \quad \begin{aligned} & \text { Can be expressed in terms of } N_{i}\end{aligned}$
Reduction of $E_{\mu_{1} \mu_{2} \ldots}$ in terms of $D_{\mu_{1} \mu_{2} \ldots}$

Reduction of singular 5-point integrals

Dress all the mass less propagators with small mass λ :

$$
E^{d} \rightarrow E^{\lambda, d}
$$

[Dittmaier '03]
Consider:

$$
E^{\lambda, d}=E_{\text {sing. }}^{\lambda, d}+\underbrace{\left(E^{\lambda, d}-E_{\text {sing. }}^{\lambda, d}\right)}_{\text {regularization scheme indep. }}
$$

For $\lambda \rightarrow 0, E_{\text {sing. }}^{\lambda, d}$ reproduces the singular behaviour of E^{d} $E_{\text {sing. }}^{\lambda, d}$. obtained from soft and collinear limits of $E^{\lambda, d}$

$$
\begin{aligned}
& \rightarrow \text { simple combination of 3-point integrals } \\
& E^{d}=E_{\text {sing. }}^{\lambda=0, d}+\left(E^{\lambda, d=4}-E_{\text {sing. }}^{\lambda, d=4}\right)
\end{aligned}
$$

can now be reduced to lower-point integrals

Alternative reduction procedure

From Schwinger or Feynman parametrization of tensor integrals:

$$
\begin{aligned}
& \int d \ell \frac{\ell_{\mu_{1}} \ldots \ell_{\mu_{r}}}{\left(\left(\ell+q_{1}\right)^{2}-m_{1}^{2}\right)\left(\left(\ell+q_{2}\right)^{2}-m_{2}^{2}\right) \ldots\left(\left(\ell+q_{n}\right)^{2}-m_{n}^{2}\right)} \\
&= \sum_{\lambda, z_{1}, \ldots, z_{n}} \delta\left(2 \lambda+\sum_{i} z_{i}-r\right)\left(-\frac{1}{2}\right) z_{1}!\ldots z_{n}!\left\{g^{\lambda} q_{1}^{z_{1}} \ldots q_{n}^{z_{n}}\right\}^{\mu_{1} \ldots \mu_{r}} \\
& \quad \times I\left(d+2(m-\lambda),\left\{1+z_{i}\right\}\right) \quad \text { [Davydychev] }
\end{aligned}
$$

\rightarrow Reduction to scalar integrals with raised powers of the propagators and shifted dimension!

Integration by parts (IBP)

[Chetyrkin, Kataev, Tkachov]

$$
0=\int \frac{d^{d} \ell}{(2 \pi)^{d}} \frac{\partial}{\ell^{\mu}}\left(\frac{\sum_{i}^{n} y_{i}\left(\ell+q_{i}\right)}{\left(\left(\ell+q_{1}\right)^{2}-m_{1}^{2}\right)^{\nu_{1}} \ldots\left(\left(\ell+q_{n}\right)^{2}-m_{n}^{2}\right)^{\nu_{n}}}\right)
$$

[Duplancic, Nizic 03, Giele, Glover 04]

