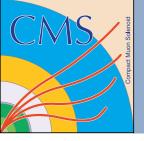
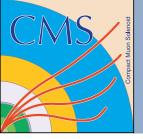
Top Physics at CMS

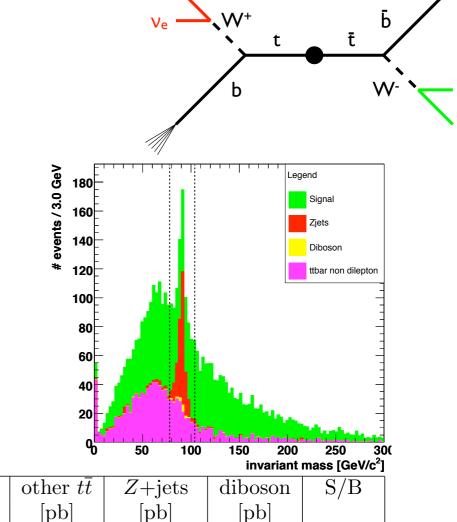

(P. LEAVELD WITH DUTIN, (B)

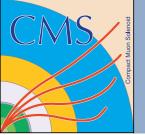
A year a seture on a

to gury barro) to have

o to carlo at canara trane

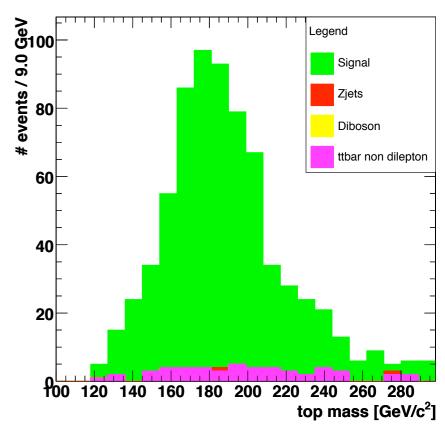

Markus.Duda@Physik.RWTH-Aachen.DE III. Physikalisches Institut, Lehrstuhl B RWTH Aachen


- top mass determination in tt decays
 - di-leptonic (<u>Daiske.Tornier@Physik.RWTH-Aachen.DE</u>)
 - semi-leptonic (<u>Stefan.Kasselmann@Physik.RWTH-Aachen.DE</u>)
 - fully hadronic (<u>Markus.Duda@Physik.RWTH-Aachen.DE</u>)
- W-helicity in tt decays (<u>Andreas.Tigges@Physik.RWTH-Aachen.DE</u>)
- spin correlations in tt decays (<u>Martina.Davids@Physik.RWTH-Aachen.DE</u>)
- tt̄γ events (<u>Thomas.Hermanns@Physik.RWTH-Aachen.DE</u>)


Di-Leptonic

- very clean final state signature with two isolated opposite-sign leptons and two b-jets
- two neutrinos prevent direct reconstruction
- event kinematic still has large sensitivity to m_t
- selection
 - single and di-lepton trigger
 - two isolated opposite-sign leptons with pT > 20 GeV/c
 - for two same-flavour leptons remove Z mass peak
 - two b-jets with $p_T > 30 \text{ GeV/c}$
 - MET > 40 GeV

	$t\overline{t}$ dilepton	other $t\overline{t}$	Z+jets	diboson	S/B
	[pb]	[pb]	[pb]	[pb]	
before selection	54.22	433.78	11055.30	19.73	0.005
L1	45.06	302.34	2967.13	9.64	0.014
HLT	36.41	184.43	2007.67	6.9	0.017
2 isolated leptons	9.60	4.22	48.33	0.240	0.182
2 b-jets	5.30	3.13	2.55	0.031	0.928
lepton inv. mass	4.46	2.88	0.55	0.014	1.292
lepton pt cut	3.07	0.62	0.34	0.013	3.151
$E_{\rm T}^{\rm miss}$ cut	2.30	0.43	0.05	0.011	4.748
$\#$ high $p_{\rm T}$ jet cut	1.85	0.21	0.03	0.008	7.332
kinematical reco.	0.66	0.05	0.002	0.008	12.167

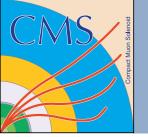


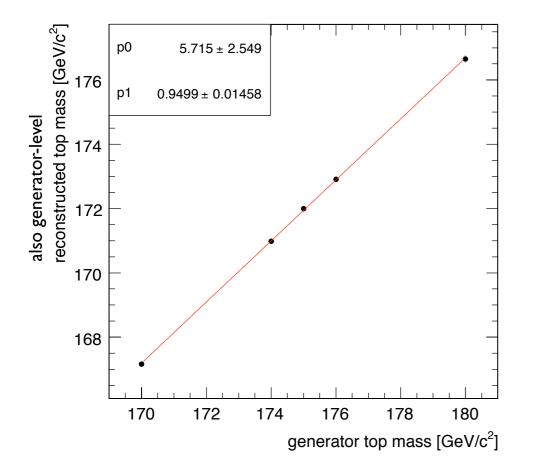
Di-Leptonic

• event kinematic underconstrained due to two undetected v

$$0 = p_x^{l^+} + p_x^{l^-} + p_x^b + p_x^{\bar{b}} + p_x^{\nu} + p_x^{\bar{\nu}}$$

$$0 = p_y^{l^+} + p_y^{l^-} + p_y^b + p_y^{\bar{b}} + p_y^{\nu} + p_y^{\bar{\nu}}$$

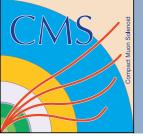

$$\begin{split} m_{W^+}^2 &= (E^{l^+} + E^{\nu})^2 - \sum_i (p_i^{l^+} + p_i^{\nu})^2 \\ m_{W^-}^2 &= (E^{l^-} + E^{\bar{\nu}})^2 - \sum_i (p_i^{l^-} + p_i^{\bar{\nu}})^2 \\ m_t^2 &= (E^{l^+} + E^{\nu} + E^b)^2 - \sum_i (p_i^{l^+} + p_i^{\nu} + p_i^b)^2 \\ m_{\bar{t}}^2 &= (E^{l^-} + E^{\bar{\nu}} + E^{\bar{b}})^2 - \sum_i (p_i^{l^-} + p_i^{\bar{\nu}} + p_i^{\bar{b}})^2 \end{split}$$


• written as a 4th order polynomial with m_t as parameter

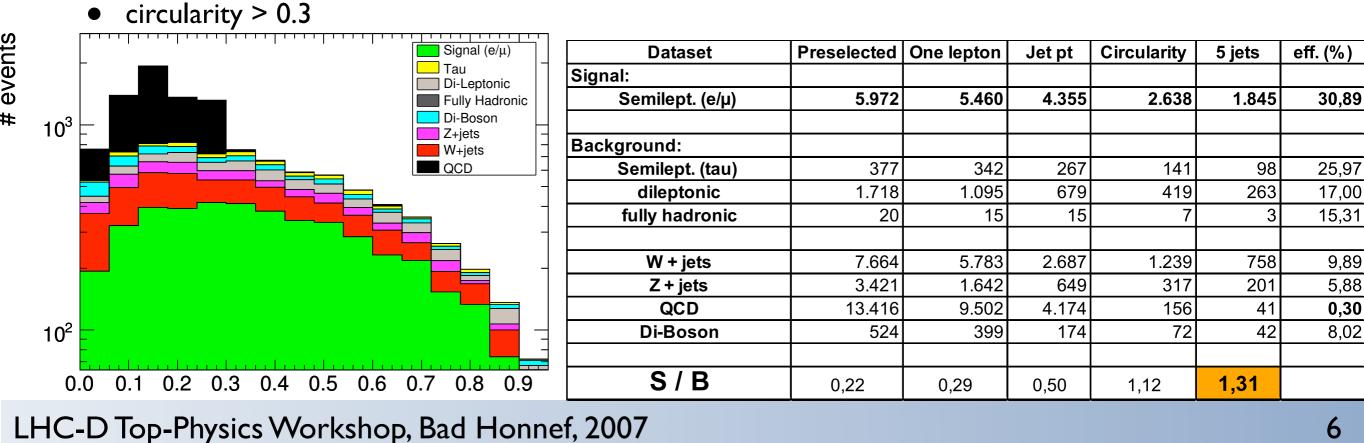
$$0 = \sum_{i=0}^{4} c_i(M_t, p^{l\pm}, p^b, p^{\bar{b}})(p_x^{\bar{\nu}})^i$$

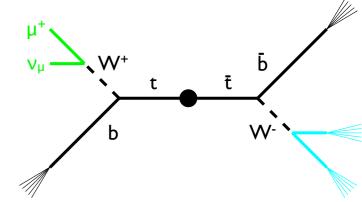
- use SM neutrino spectrum for $(p_x^{\overline{\nu}})$
- step through 100 GeV/c² < m_t < 300 GeV/c² and weight kinematic solutions including four-fold ambiguity

Di-Leptonic

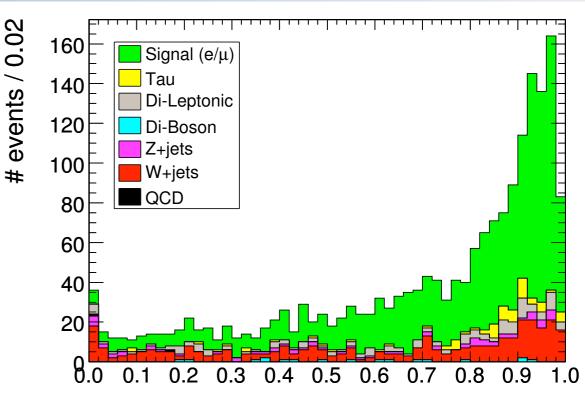

	$\Delta m_t [{ m GeV}/c^2]$
IS/FS Radiation	0.3
Jet Energy Scale	2.9
Total Systematical Uncertainty	2.9
Statistical Uncertainty (1 fb^{-1})	1.5
Statistical Uncertainty (10 fb^{-1})	0.5

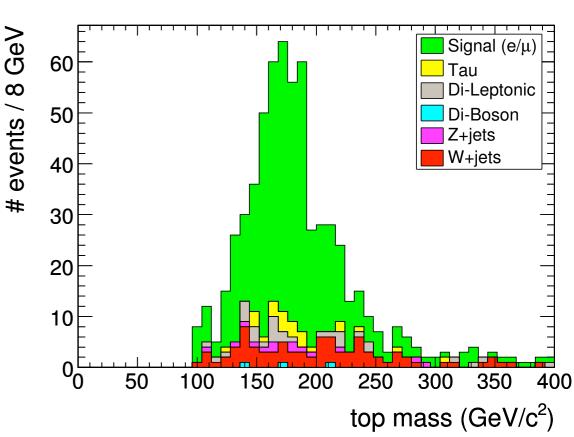
for 1/fb already systematics dominated

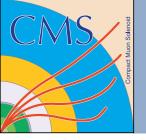

 $\Delta m_t = \pm 1.5 \text{ (stat.)} \pm 2.9 \text{ (syst.)} \text{ GeV/c}^2$


improves with 10/fb of well-understood data to

$$\Delta m_t = \pm 0.5 \text{ (stat.)} \pm 1.1 \text{ (syst.)} \text{ GeV/c}^2$$




- isolated lepton, MET, two b-jets, two light quark jets
- analysis scenario "First Physics Run"
 - no ECAL endcaps, no E_T, no b-tagging
- selection
 - full LI and HLT trigger
 - exactly one isolated electron or muon with $p_T > 10$ GeV/c
 - 4 or 5 jets with $p_T > 30$ GeV/c, three of them with $p_T > 40$ GeV/c



- use likelihood ratio for top quark reconstruction with the input variables
 - two jet invariant mass
 - two jet angle sum
 - three jet angle sum
 - two jet p_T sum
 - angle between top and antitop
 - angle between lepton and jet
- max. likelihood ratio > 0.9 yields S/B = 2.9
- but still high combinatorical background
- jet pairing purity about 30%, limited by the statistics of the "First Physics Run"

	Standard Selection			
	Gaussian Fit	Gaussian Ideogram	Full Scan Ideogram	
	Δm_t	$\Delta \mathrm{m_t}$	$\Delta \mathrm{m_t}$	
	(GeV/c^2)	(GeV/c^2)	(GeV/c^2)	
Pile-Up	1.9	1.4	1.2	
Underlying Event	1.0	0.7	0.5	
Jet Energy Scale (light)	2.4	0.1	0.1	
Jet Energy Scale (heavy)	1.4	1.3	1.2	
Radiation (pQCD)	0.8	0.3	0.2	
Fragmentation	0.4	0.4	0.3	
b-tagging	2.0	0.5	0.3	
Background (*)	0.4	0.4	0.4	
Parton Density Functions	0.1	0.1	0.1	
Total Systematical uncertainty	4.9	2.3	1.9	
Statistical Uncertainty (10fb ⁻¹)	0.32	0.36	0.21	
Total Uncertainty	4.9	2.3	1.9	

<u>conservative</u>

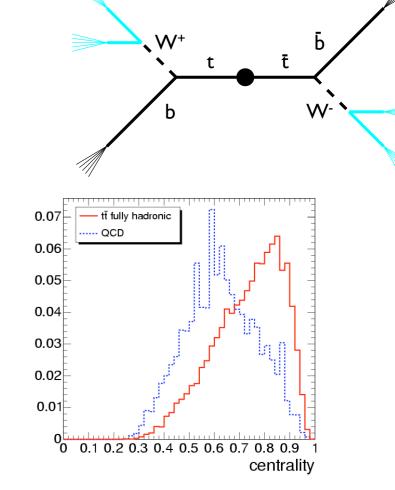
 $\Delta m_t = \pm 0.2$ (stat.)

 \pm 1.9 (syst.) GeV/c²

long term

- pileup $\rightarrow 1/6$
- b-jet energy scale $2\% \rightarrow 1.5\%$
- b-tagging 5%→2%

 $\Delta m_t = \pm 0.2 \text{ (stat.)}$

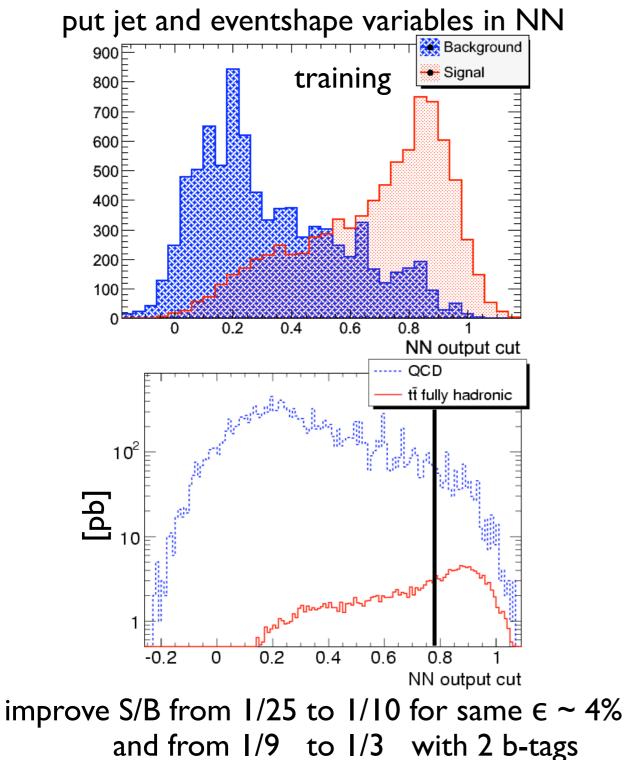

 \pm I.I (syst.) GeV/c²

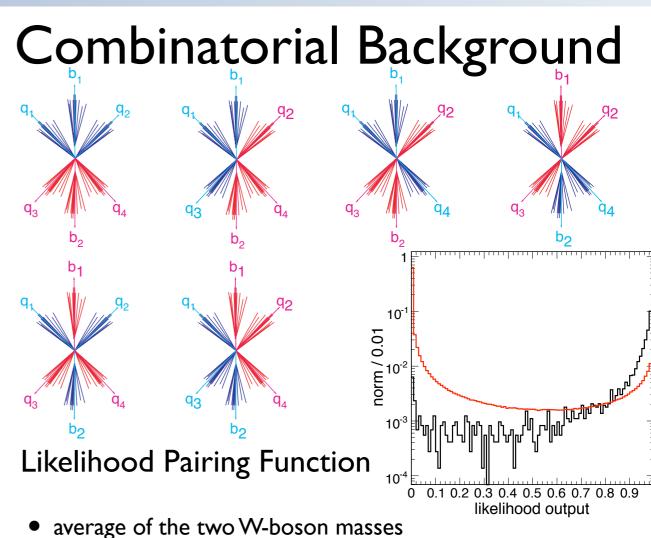
	Standard Selection					
	Gaussian Fit	Gaussian Ideogram	Full Scan Ideogram			
	Δm_t	Δm_t	$\Delta \mathrm{m_t}$			
	(GeV/c^2)	(GeV/c^2)	(GeV/c^2)			
Pile-Up	0.32	0.23	0.21			
Underlying Event	0.50	0.35	0.25			
Jet Energy Scale (light)	1.80	0.15	0.06			
Jet Energy Scale (heavy)	1.05	0.98	0.90			
Radiation (pQCD)	0.80	0.27	0.22			
Fragmentation	0.40	0.40	0.30			
b-tagging	0.80	0.20	0.18			
Background	0.30	0.25	0.25			
Parton Density Functions	0.12	0.10	0.08			
Total Systematical uncertainty	3.21	1.27	1.13			
Statistical Uncertainty (10fb ⁻¹)	0.32	0.36	0.21			
Total Uncertainty	3.23	1.32	1.15			

Fully Hadronic

- six-jets topology, two b-jets, four light quark jets
- kinematics fully reconstructable
- large background from QCD multi-jet
- selection
 - specific multi-jet trigger with online b-tagging
 - eventshape variables
 - offline b-tagging
 - neural network

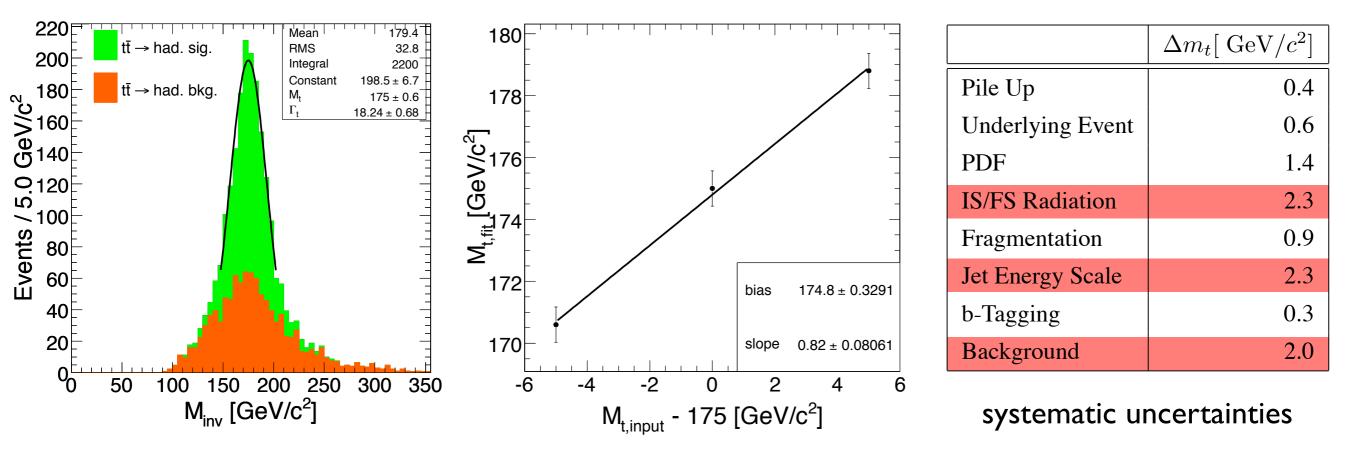
Selection	Requirement	$\sigma \epsilon \text{ [pb]}$	$\sigma \epsilon_{\rm QCD} \ [\rm pb]$	S/B
Before Selection (PYTHIA LO)		225	25M	$1/10^{5}$
Trigger	HLT multi-jet+b-jet	38	11600	1/300
Event	$6 \le N_{\text{jet}} \le 8$	35	7900	1/225
	$E_{\rm T} \ge 30 {\rm GeV}$	15	930	1/60
centrality ≥ 0.68		9.9	324	1/33
	aplanarity ≥ 0.024	9.0	251	1/28
	$\sum_{3} E_{\rm T} \ge 148 {\rm GeV}$	9.0	229	1/25
<i>b</i> -tagging	1 b-tag	8.6	148	1/17
	2 b-tag	6.0	54	1/9




COMPACT Monor Selence

Fully Hadronic

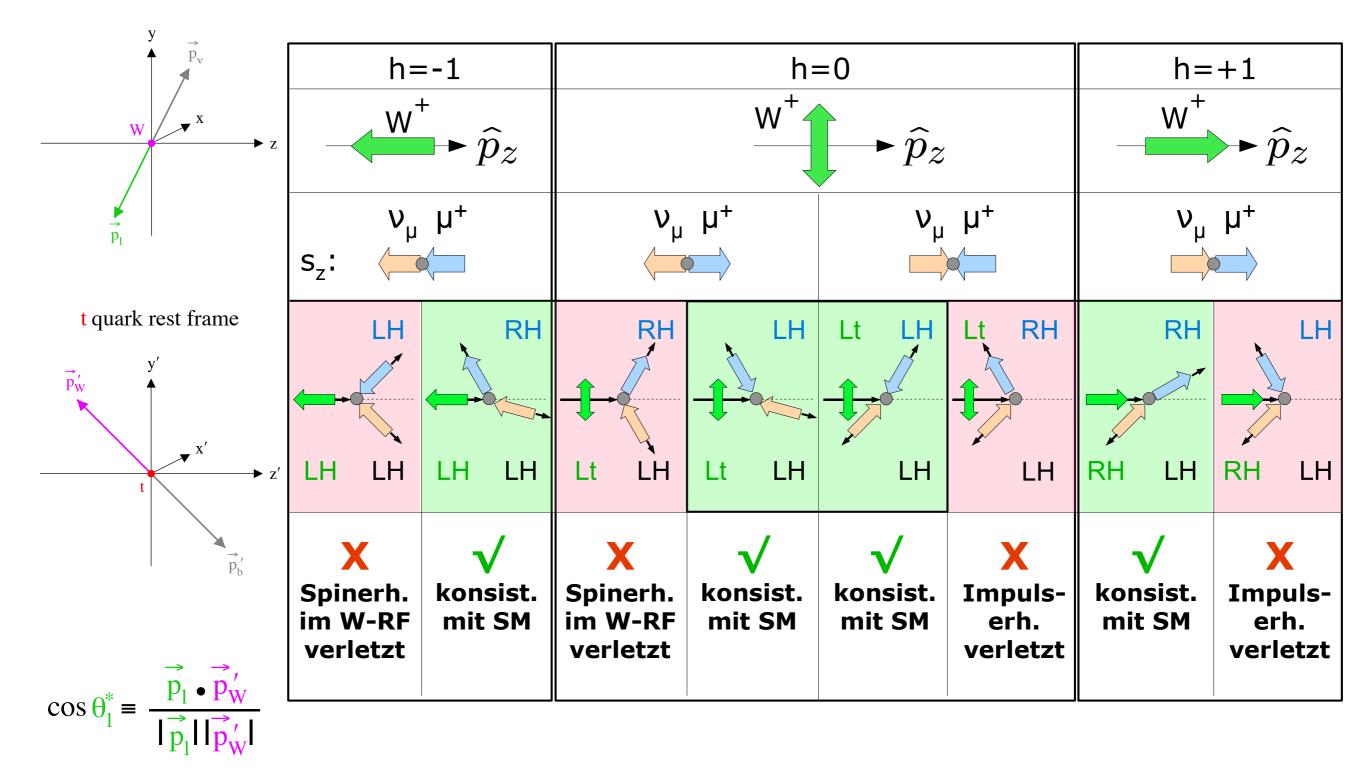
QCD Background

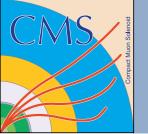

LHC-D Top-Physics Workshop, Bad Honnef, 2007

- difference of the two W-boson masses
- sum of the inter-jet angles of the W-boson candidates
- difference of the two top-quark masses
- sum of the inter-jet angles of the top-quark candidates
- angle between the direction of the two top-quark candidates

jet pairing efficiency of ~ 68%

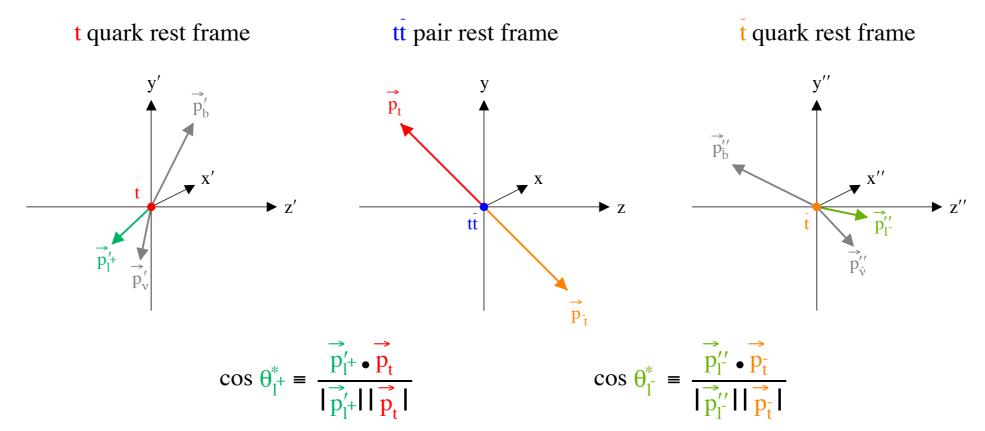
Fully Hadronic


- S/B ~ 2/3, although not enough simulated QCD events (yet) to determine background shape
- for I/fb already systematics dominated
- $\Delta m_t = \pm 0.6 \text{ (stat.)} \pm 4.2 \text{ (syst.)} \text{ GeV/c}^2$



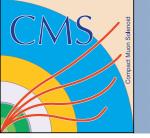
W-Helicity

W boson rest frame


W-Helicity

distribution of the lepton helicity angle in the SM $\frac{1}{N}\frac{dN}{d\cos\theta_l^*} = \frac{3}{8}\frac{1}{1+f}(1-\cos\theta_l^*)^2 + \frac{3}{4}\frac{f}{1+f}\sin^2\theta_l^* \quad \text{with} \quad f = \frac{m_t^2}{2m_W^2}$ W(cos(theta)) ² [h_w=-1,0 (LH,Lt,RH) $\begin{array}{c} 0.29^{*}(1-x)^{**2} \\ 0.7^{*}2^{*}(1-x^{**2}) \\ 0.01^{*}(1+x)^{**2} \\ 0.29^{*}(1-x)^{**2} + 0.7^{*}2^{*}(1-x^{**2}) + 0.01^{*}(1+x)^{**2} \end{array}$ $\frac{\Gamma(h_W = -1)}{\Gamma_{\text{tot}}} \sim 0.3$ $\frac{\Gamma(h_W = 0)}{\Gamma_{\text{tot}}} \sim 0.7$ 1.5 h_w=0 (Lt) $\frac{\Gamma(h_W = +1)}{\Gamma_{\rm tot}} <$ h_w=-1 (LH) 0.010.5 **Obere Grenze für SM-Zerfälle** $h_{w} = +1$ (RH) [Grote, Korner, Mauser] -0.5 0.5 0

LHC-D Top-Physics Workshop, Bad Honnef, 2007

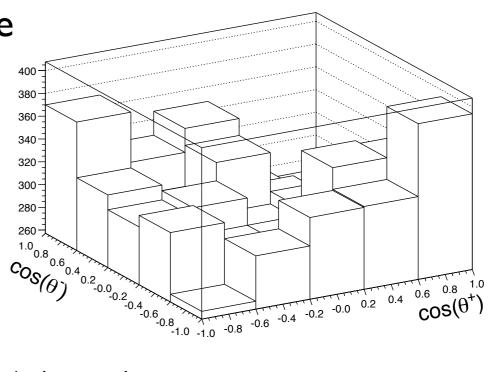

Spin Correlations

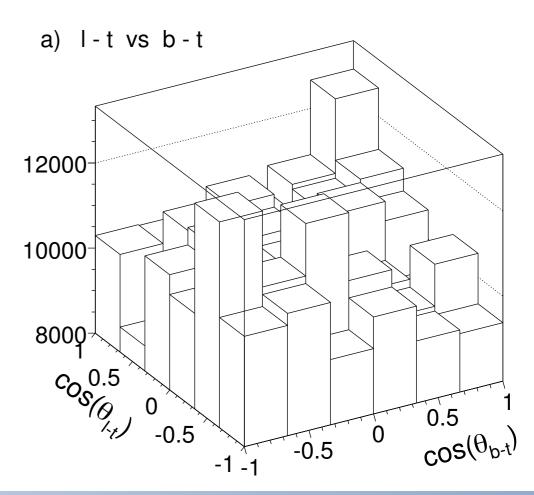
- top quark decays before hadronisation due to its short lifetime
- angular distribution of tt decay products contains information about the spin correlation of tt and SM couplings
- SM theoretical calculations predict an asymmetry coefficient A

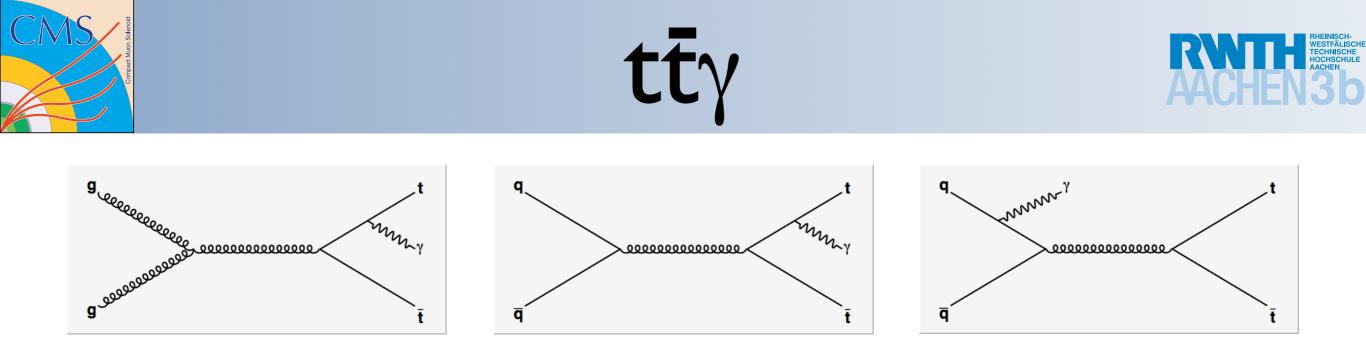
•
$$A_{gg} = 0.43I$$

• $A_{qq'} = -0.469$

$$A = \frac{N(t_L \bar{t}_L + t_R \bar{t}_R) - N(t_L \bar{t}_R + t_R \bar{t}_L)}{N(t_L \bar{t}_L + t_R \bar{t}_R) + N(t_L \bar{t}_R + t_R \bar{t}_L)}$$

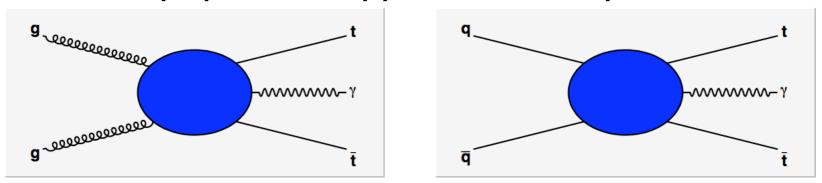


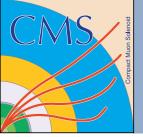

Spin Correlations


 extract the asymmetry coefficient A from double differential angular distributions

$$\frac{1}{N}\frac{d^2N}{d\cos\theta_1^*d\cos\theta_2^*} = \frac{1}{4}(1 - A\cos\theta_1^*\cos\theta_2^*)$$

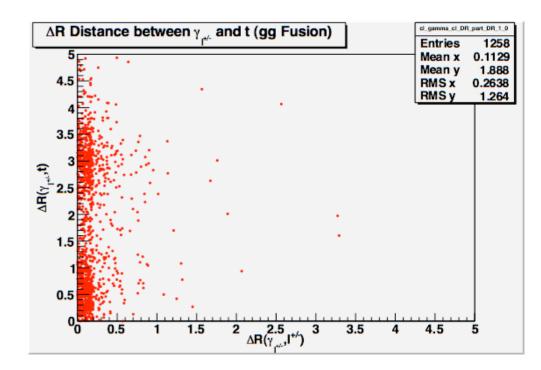
- di-leptonic
 - theoretical: leptons have best spin-analyser quality
 - experimental: leptons are easiest and best reconstructed
 - but the tt system is difficult to reconstruct due to the neutrinos, even with top mass constraint
- semi-leptonic (CMS-Note 2006/111)
 - only one spin-analyser is leptonic
 - tt system is easy to reconstruct
 - selection described in the note yields $\epsilon \sim 5\%$ and S/B=4.5
 - $A = 0.375 \pm 0.027(\text{stat.}) \pm 0.096(\text{syst.})$

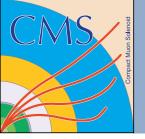




3 classes of diagrams for the hard process, with the first two signal for top-QED-coupling studies

while TopReX implements these diagrams no distinction between photon radiation off initial quarks and top quarks in qq' annihilation processes


go back to PYTHIA+PHOTOS to develop generator level cuts for hard photon radiation off top quarks



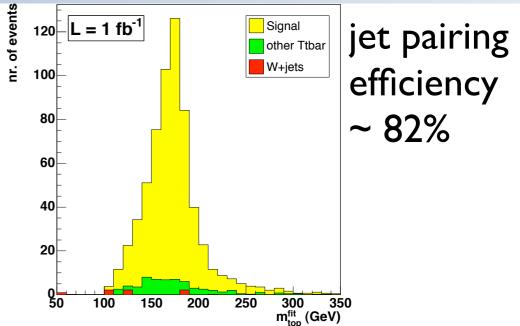
- use preselection of semi-leptonic top mass analysis
- use cuts on photon properties
 - E_γ>30.0 GeV
 - |η_γ|<2.5
 - ΔR>0.5 between photon and charged particles (b-quarks, W, decay products of W)

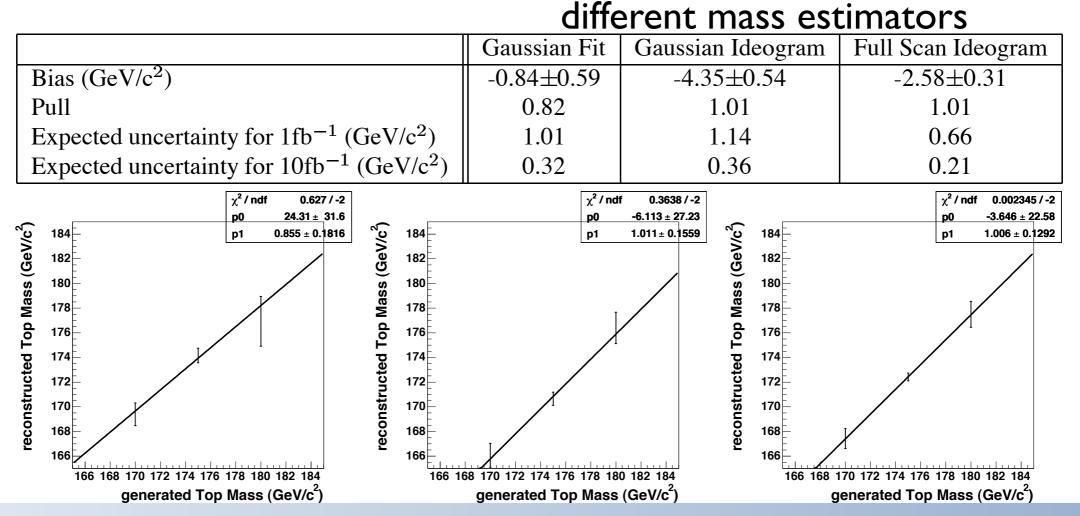
Number of photons	lean x lean y MS x	1.258
		2.005 0.5822 0.8151
radiated off preselection $E_{\gamma}\eta_{\gamma}$ cuts dR cuts	wio y	0.8151
b/bbar 1,658 (1.8%) 251 (6.9%) 53 (19.9%)		
W + / W - 0 0 0 1.5		
charged lepton 83,861 (93.2%) 2,718 (75.0%) 63 (23.7%)		
quarks from W 3,737 (4.2%) 473 (13.1%) 21 (7.9%) 00 0.5 1 1.5 2 AF (Y, t) 3 3.5 4 4.	4.5	」 5
total number 89,972 (100%) 3,621 (100%) 266 (100%)		

- adapt source code to (new) CMS-software framework
 - implement tt-selection (lepton+jets) from mass determination
 - add photon selection according to generator studies
 - add kinematic constraints including photon-momentum to selection
- check if generator results also apply for detector-simulated events
- reanalysis of a tt̄γ dataset with modified top-QED-couplings
 - try to distinguish between scenarios
 - distribution-generator for modified top-QED-couplings exists (Baur), but no event-generator

Backup

- isolated lepton, MET, two b-jets, two light quark jets
- selection
 - single-muon trigger
 - isolated muon with $p_T > 20 \text{ GeV/c}$
 - four non-overlapping jets with E_T > 30 GeV, two b-tagged, two anti-b-tagged
 - probability of kinematic fit (M_W constraint) $P_{\chi^2} > 0.2$
 - likelihood ratio $L_{signal} \rightarrow P_{sign} > 0.8$
 - pT of muon candidate
 - pT of second muon candidate
 - min E_T among four leading jets
 - likelihood ratio $L_{combined} \rightarrow P_{comb} > 0.5$
 - ∠(b-jet, muon)
 - ∠(b-jet,W)
 - combined electric charge
 - pT hadronic top


LHC-D Top-Physics Workshop, Bad Honnef, 2007


ts	$ \begin{array}{c} \mu^+ \\ \nu_{\mu} \\ \psi^+ \\ b \\ \psi^- $
1	
0.8	
0.6	
0.4	
0.2	
0 <u>∟</u> -5	-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 log(L _{comb})

	signal	other $t\bar{t}$	W+4j	Wbb+2j	Wbb+3j	S/B
L1+HLT Trigger	62.2%	5.30%	24.1%	8.35%	8.29%	0.74
4 jets $E_T > 30 \text{GeV}$	25.4%	1.01%	4.1%	1.48%	3.37%	1.69
$p_T^{\text{lepton}} > 20 \text{GeV/c}$	24.8%	0.97%	3.9%	1.41%	3.14%	1.72
b-tag criteria	5.5%	0.21%	0.052%	0.47%	0.70%	3.73
No jet overlap	3.0%	0.11%	0.027%	0.25%	0.44%	3.87
P_{χ^2} -cut 20%	1.4%	0.039%	0.0097	0.061	0.07	5.3
$P_{\rm sign}$ -cut 80%	1.2%	0.025%	0.0085	0.052	0.05	6.8
$P_{\rm comb}$ -cut 50%	0.7%	0.013%	0.0036	0.013	0.	8.2
Scaled $\mathcal{L} = 1 \text{fb}^{-1}$	588	64	6	2	0	8.2

P

distribution of the mass of the hadronic decaying top quark for the selected events after applying the kinematic fit imposing M_W constraints

LHC-D Top-Physics Workshop, Bad Honnef, 2007