## asymptotic safety BSM

**Daniel F Litim** 

US University of Sussex

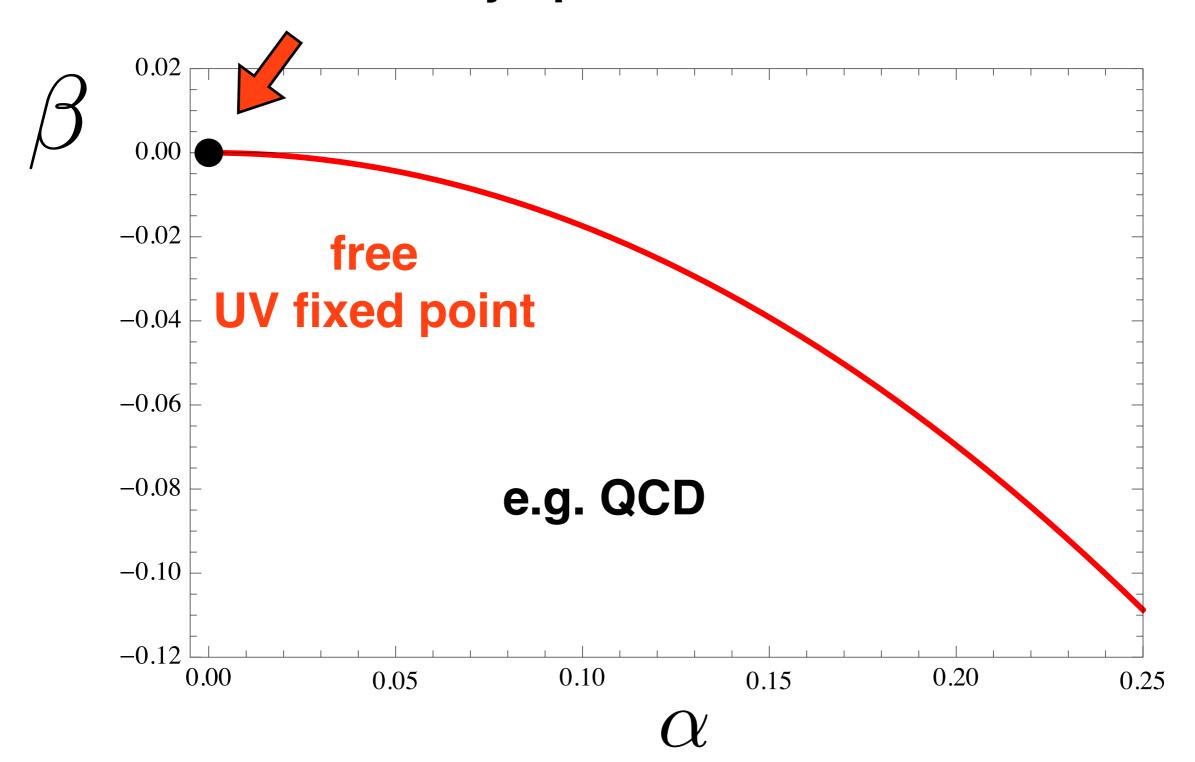


AD Bond, G Hiller, K Kowalska, DF Litim, 1702.01727 AD Bond, DF Litim, 1608.00519 DF Litim, F Sannino, 1406.2337



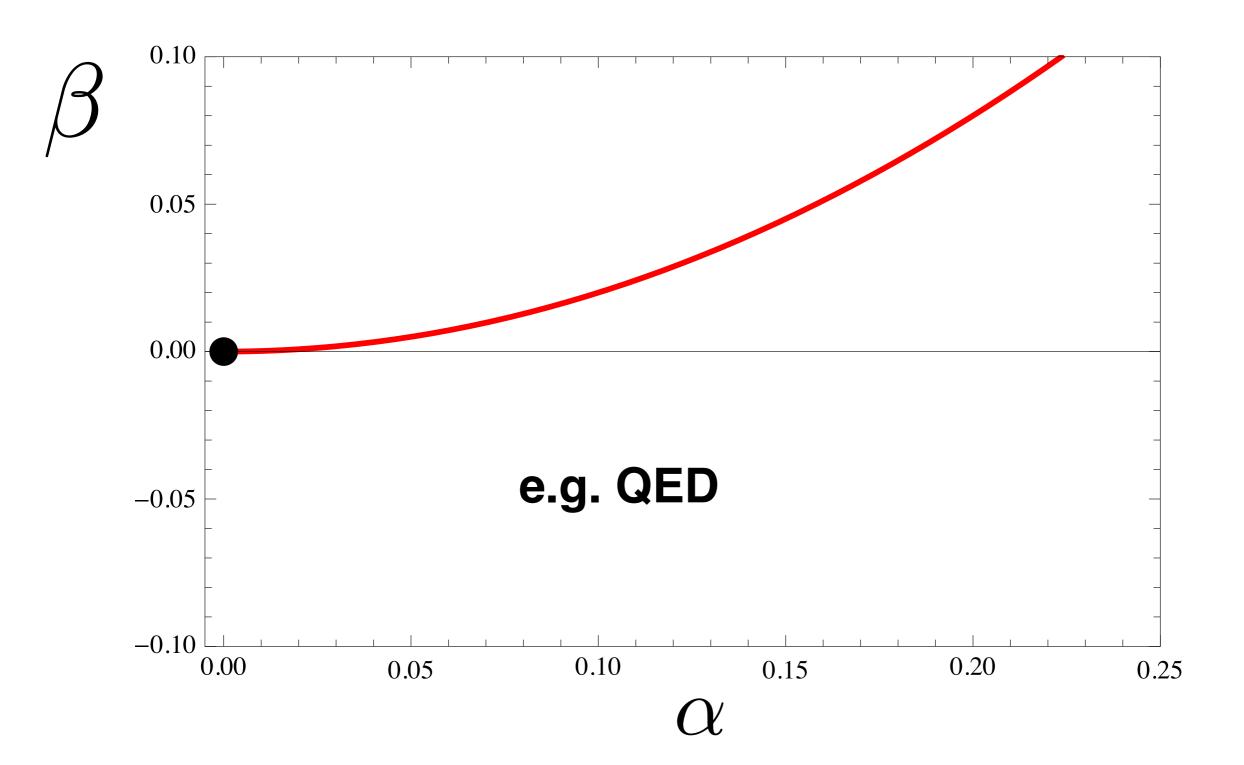


### asymptotic freedom



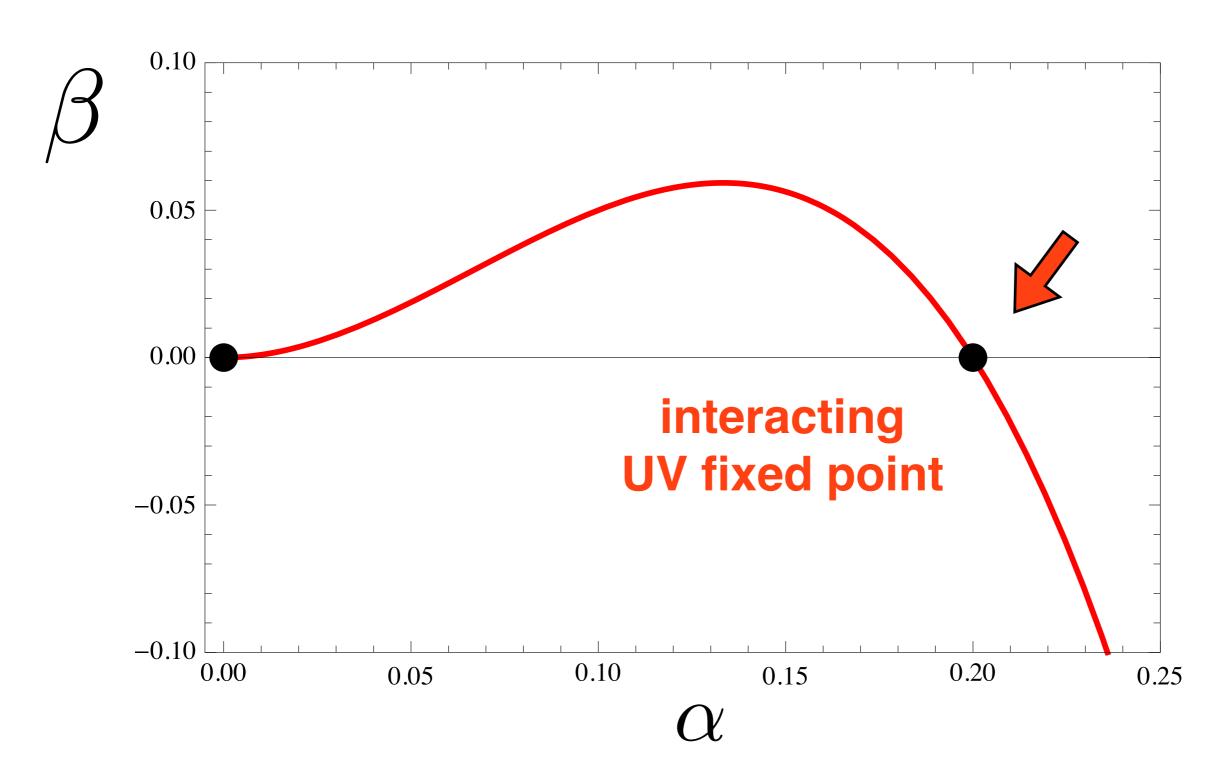


#### infrared freedom





### asymptotic safety





# theorems for asymptotic safety

Bond, Litim 1608.00519

| case       | gauge group                                  | matter                                                                 | Yukawa         | asymptotic<br>safety |
|------------|----------------------------------------------|------------------------------------------------------------------------|----------------|----------------------|
| a)         | simple                                       | fermions in irreps                                                     | No             | No                   |
| b)         | simple or abelian                            | fermions, any rep<br>scalars, any rep<br>fermions and scalars, any rep | No<br>No<br>No | No<br>No<br>No       |
| <b>c</b> ) | semi-simple, with or without abelian factors | fermions, any rep<br>scalars, any rep<br>fermions and scalars, any rep | No<br>No<br>No | No<br>No<br>No       |
| d)         | simple or abelian                            | fermions and scalars, any rep                                          | Yes            | <b>Yes</b> *)        |
| <b>e</b> ) | semi-simple, with or without abelian factors | fermions and scalars, any rep                                          | Yes            | <b>Yes</b> *)        |

<sup>\*)</sup> provided certain auxiliary conditions hold true



### gauge theory

$$\alpha = \frac{g^2}{(4\pi)^2}$$

$$\beta = -B \alpha^2 + C \alpha^3 + \mathcal{O}(\alpha^4)$$

weakly coupled fixed point

$$0 < \alpha^* = B/C \ll 1$$



### gauge theory

$$\alpha = \frac{g^2}{(4\pi)^2}$$

$$\beta = -B \alpha^2 + C \alpha^3 + \mathcal{O}(\alpha^4)$$

### weakly coupled fixed point

$$0 < \alpha^* = B/C \ll 1$$

$$B = \frac{2}{3} \left( 11C_2^G - 2S_2^F - \frac{1}{2}S_2^S \right)$$

$$C = 2\left[ \left( \frac{10}{3} C_2^G + 2C_2^F \right) S_2^F + \left( \frac{1}{3} C_2^G + 2C_2^S \right) S_2^S - \frac{34}{3} (C_2^G)^2 \right]$$



### gauge theory

$$\alpha = \frac{g^2}{(4\pi)^2}$$

$$\beta = -B \alpha^2 + C \alpha^3 + \mathcal{O}(\alpha^4)$$

weakly coupled fixed point

$$0 < \alpha^* = B/C \ll 1$$

$$B = \frac{2}{3} \left( 11C_2^G - 2S_2^F - \frac{1}{2}S_2^S \right)$$

$$C = 2\left[\left(\frac{10}{3}C_2^G + 2C_2^F\right)S_2^F + \left(\frac{1}{3}C_2^G + 2C_2^S\right)S_2^S - \frac{34}{3}(C_2^G)^2\right]$$



### gauge theory

$$\alpha = \frac{g^2}{(4\pi)^2}$$

$$\beta = -B \alpha^2 + C \alpha^3 + \mathcal{O}(\alpha^4)$$

### weakly coupled fixed point

$$0 < \alpha^* = B/C \ll 1$$

$$B = \frac{2}{3} \left( 11C_2^G - 2S_2^F - \frac{1}{2}S_2^S \right)$$

$$C = 2\left[ \left( \frac{10}{3} C_2^G + 2C_2^F \right) S_2^F + \left( \frac{1}{3} C_2^G + 2C_2^S \right) S_2^S - \frac{34}{3} (C_2^G)^2 \right]$$



### gauge theory

$$\alpha = \frac{g^2}{(4\pi)^2}$$

$$\beta = -B \alpha^2 + C \alpha^3 + \mathcal{O}(\alpha^4)$$

weakly coupled fixed point

$$0 < \alpha^* = B/C \ll 1$$

competition between matter and gauge fields

$$B, C > 0$$
:

asymptotic freedom Caswell-Banks-Zaks IR FP



### gauge theory

$$\alpha = \frac{g^2}{(4\pi)^2}$$

$$\beta = -B \alpha^2 + C \alpha^3 + \mathcal{O}(\alpha^4)$$

weakly coupled fixed point

$$0 < \alpha^* = B/C \ll 1$$

competition between matter and gauge fields

$$B, C > 0$$
:

asymptotic freedom Caswell-Banks-Zaks IR FP

$$B, C < 0$$
:

asymptotic safety UV FP no known examples!



### gauge theory

$$\alpha = \frac{g^2}{(4\pi)^2}$$

$$\beta = -B \alpha^2 + C \alpha^3 + \mathcal{O}(\alpha^4)$$

### B,C<0: UV fixed point?

$$C = \frac{2}{11} \left[ 2S_2^F \left( 11C_2^F + 7C_2^G \right) + 2S_2^S \left( 11C_2^S - C_2^G \right) - 17BC_2^G \right]$$



### gauge theory

$$\alpha = \frac{g^2}{(4\pi)^2}$$

$$\beta = -B \alpha^2 + C \alpha^3 + \mathcal{O}(\alpha^4)$$

$$B,C<0:$$
 UV fixed point

$$C = \frac{2}{11} \left[ 2S_2^F \left( 11C_2^F + 7C_2^G \right) + 2S_2^S \left( 11C_2^S - C_2^G \right) - 17BC_2^G \right]$$

fermions

scalars

1-loop



### gauge theory

$$\alpha = \frac{g^2}{(4\pi)^2}$$

$$\beta = -B \alpha^2 + C \alpha^3 + \mathcal{O}(\alpha^4)$$

$$B,C<0:$$
 UV fixed point

$$C = \frac{2}{11} \left[ 2S_2^F \left( 11C_2^F + 7C_2^G \right) + 2S_2^S \left( 11C_2^S - C_2^G \right) - 17B C_2^G \right]$$

fermions

scalars

1-loop



Caswell '74



### gauge theory

$$\alpha = \frac{g^2}{(4\pi)^2}$$

$$\beta = -B \alpha^2 + C \alpha^3 + \mathcal{O}(\alpha^4)$$

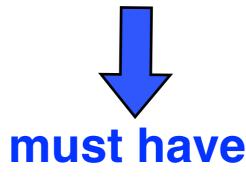
### B,C<0: UV fixed point

$$C = \frac{2}{11} \left[ 2S_2^F \left( 11C_2^F + 7C_2^G \right) + 2S_2^S \left( 11C_2^S - C_2^G \right) - 17BC_2^G \right]$$

fermions

scalars

1-loop

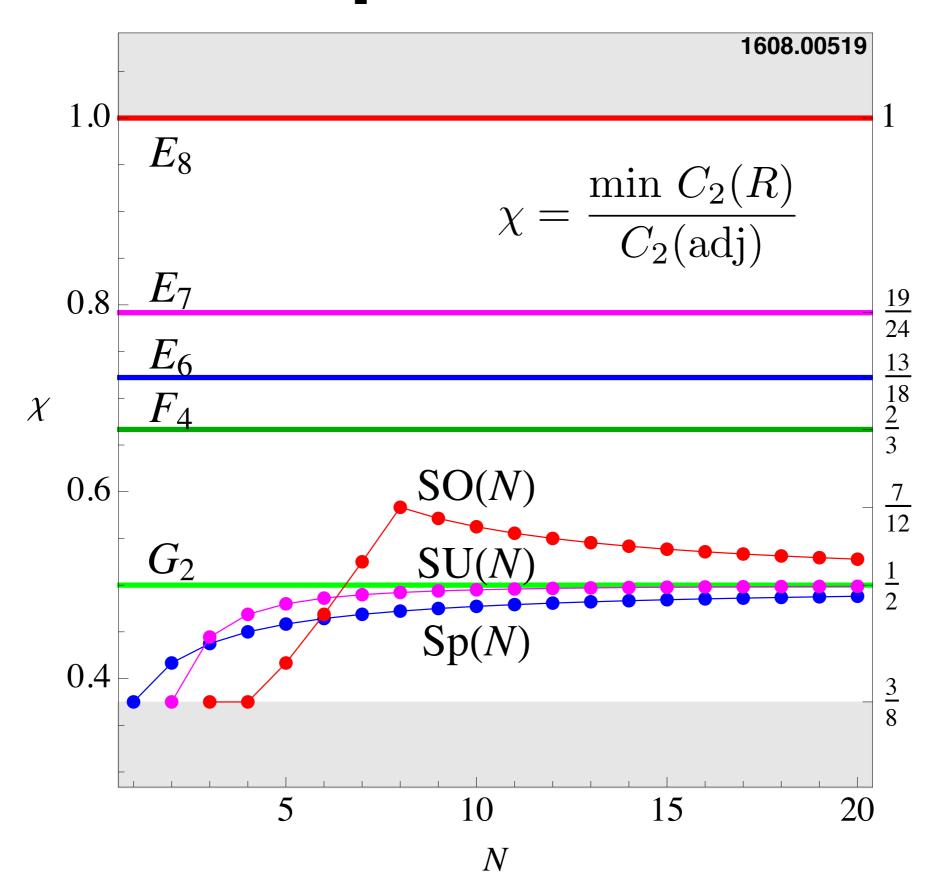


must have 
$$C_2^S < \frac{1}{11}C_2^G$$



### quadratic Casimirs







## asymptotic safety

#### result

1608.00519

| case       | gauge group                                        | matter                                                                             | Yukawa         | asymptotic<br>safety |
|------------|----------------------------------------------------|------------------------------------------------------------------------------------|----------------|----------------------|
| a)         | simple                                             | fermions in irreps                                                                 | No             | No                   |
| <b>b</b> ) | simple or abelian                                  | fermions, any rep simple or abelian scalars, any rep fermions and scalars, any rep |                | No<br>No<br>No       |
| c)         | semi-simple,<br>with or without<br>abelian factors | fermions, any rep<br>scalars, any rep<br>fermions and scalars, any rep             | No<br>No<br>No | No<br>No<br>No       |

### strict no go theorems



## can more couplings help?

more gauge couplings

No (same sign)

scalar self-couplings

No (start at 3- or 4-loop)

Yukawa couplings

Yes (start at 2-loop)



# basics of asymptotic safety

gauge Yukawa theory



$$\partial_t \alpha_g = -B \alpha_g^2 + C \alpha_g^3 - D \alpha_g^2 \alpha_y \qquad \stackrel{!}{=} 0$$
$$\partial_t \alpha_y = E \alpha_y^2 - F \alpha_g \alpha_y \qquad \stackrel{!}{=} 0$$

$$t = \ln \mu / \Lambda$$

$$\alpha_* \ll 1$$

loop coefficients D, E, F > 0 in any QFT

Yukawa's slow down the running of the gauge



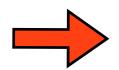
## basics of asymptotic safety

### gauge Yukawa theory

$$\partial_t \alpha_g = -B \,\alpha_g^2 + C \,\alpha_g^3 - D \,\alpha_g^2 \,\alpha_y$$

$$\partial_t \alpha_y = E \,\alpha_y^2 - F \,\alpha_g \,\alpha_y$$

$$\alpha_* \ll 1$$



### interacting UV fixed point provided that

$$DF - CE > 0$$



## asymptotic safety

### result: necessary and sufficient conditions

1608.00519

| case | gauge group                                  | matter                        | Yukawa         | asymptotic<br>safety |
|------|----------------------------------------------|-------------------------------|----------------|----------------------|
| d)   | simple or abelian                            | fermions and scalars, any rep | $\mathbf{Yes}$ | <b>Yes</b> *)        |
| e)   | semi-simple, with or without abelian factors | fermions and scalars, any rep | Yes            | <b>Y</b> es*)        |

<sup>\*)</sup> provided certain auxiliary conditions hold true



## asymptotic safety

#### result:

1608.00519

| case gauge group |                                              | matter                        | Yukawa         | asymptotic<br>safety |
|------------------|----------------------------------------------|-------------------------------|----------------|----------------------|
| d)               | simple or abelian                            | fermions and scalars, any rep | $\mathbf{Yes}$ | <b>Yes</b> *)        |
| e)               | semi-simple, with or without abelian factors | fermions and scalars, any rep | Yes            | <b>Y</b> es*)        |

<sup>\*)</sup> provided certain auxiliary conditions hold true

### exact proofs of existence (Veneziano limit)

SU(N) + scalars + fermions

DF Litim, F Sannino, 1406.2337

SU(N) x SU(M) + scalars + fermions

AD Bond, DF Litim, @ERG2016 & @BadHonnef2017 (to appear)



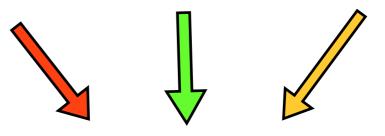
# asymptotic safety beyond the SM

AD Bond, G Hiller, K Kowalska, DF Litim, 1702.01727

minimal framework:

SM gauge symmetry

$$SU(3)_C \times SU(2)_L \times U(1)_Y$$



 $N_F$  flavors of BSM fermions

**BSM** singlet scalars

$$\psi_i(R_3,R_2,Y)$$

 $S_{ij}$ 

features: vector-like fermions global flavor symmetry  $U(N_F) \times U(N_F)$  single BSM Yukawa coupling



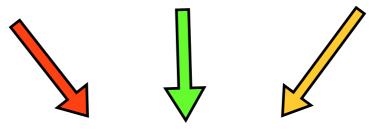
# asymptotic safety beyond the SM

AD Bond, G Hiller, K Kowalska, DF Litim, 1702.01727

#### minimal framework:

SM gauge symmetry

$$SU(3)_C \times SU(2)_L \times U(1)_Y$$



 $N_F$  flavors of BSM fermions

**BSM** singlet scalars

$$\psi_i(R_3,R_2,Y)$$

$$S_{ij}$$

$$L_{\rm BSM,\,Yukawa} = -y\,{\rm Tr}(\overline{\psi}_L\,S\,\psi_R + \overline{\psi}_R\,S^{\dagger}\,\psi_L)$$

$$L_{\rm BSM, \, kin.} = \text{Tr}\left(\overline{\psi}\,iD\,\psi\right) + \text{Tr}\left(\partial_{\mu}S^{\dagger}\,\partial^{\mu}S\right)$$



## **UV fixed points**

### possible fixed points

(two gauge plus BSM Yukawa couplings)

| #                          | gauge c          | ouplings         | BSM Yukawa       | type & info                                     |                       |
|----------------------------|------------------|------------------|------------------|-------------------------------------------------|-----------------------|
| $\overline{\mathrm{FP}_1}$ | $\alpha_3^* = 0$ | $\alpha_2^* = 0$ | $\alpha_y^* = 0$ | $\mathbf{G}\cdot\mathbf{G}$                     | non-interacting       |
| $\mathbf{FP_2}$            | $\alpha_3^* = 0$ | $\alpha_2^* > 0$ | $\alpha_y^* > 0$ | $\mathbf{G}\cdot\mathbf{G}\mathbf{Y}$           | partially interacting |
| $\mathrm{FP_3}$            | $\alpha_3^* > 0$ | $\alpha_2^* = 0$ | $\alpha_y^* > 0$ | $\mathbf{G}\mathbf{Y}\cdot\mathbf{G}$           | partially interacting |
| $\mathrm{FP}_4$            | $\alpha_3^* > 0$ | $\alpha_2^* > 0$ | $\alpha_y^* > 0$ | $\mathbf{G}\mathbf{Y}\cdot\mathbf{G}\mathbf{Y}$ | fully interacting     |



## running couplings

### gauge couplings

#### **BSM Yukawa**

$$\alpha_2 = \frac{g_2^2}{(4\pi)^2}, \qquad \alpha_3 = \frac{g_3^2}{(4\pi)^2}, \qquad \alpha_y = \frac{y^2}{(4\pi)^2}$$

$$\alpha_3 = \frac{g_3^2}{(4\pi)^2} \,,$$

$$\alpha_y = \frac{y^2}{(4\pi)^2}$$

#### **BSM RG beta functions**

$$\frac{d\alpha_3}{d \ln \mu} = (-B_3 + C_3 \alpha_3 + G_3 \alpha_2 - D_3 \alpha_y) \alpha_3^2 
\frac{d\alpha_2}{d \ln \mu} = (-B_2 + C_2 \alpha_2 + G_2 \alpha_3 - D_2 \alpha_y) \alpha_2^2 
\frac{d\alpha_y}{d \ln \mu} = (E \alpha_y - F_2 \alpha_2 - F_3 \alpha_3) \alpha_y$$



$$FP_2$$

$$\alpha_2^* > 0$$

 $lpha_2^* > 0$  weak becomes strong  $lpha_3^* = 0$  strong becomes weak weak becomes strong

UV critical surface  $\delta \alpha_2(\Lambda), \ \delta \alpha_3(\Lambda)$ 

$$\delta\alpha_2(\Lambda), \ \delta\alpha_3(\Lambda)$$

$$FP_3$$

$$\alpha_3^* > 0$$

$$\alpha_2^* = 0$$

strong remains strong weak remains weak

UV critical surface  $\delta \alpha_2(\Lambda), \ \delta \alpha_3(\Lambda)$ 

$$\delta\alpha_2(\Lambda), \ \delta\alpha_3(\Lambda)$$

$$\mathbf{FP_4}$$

$$\frac{\alpha_2^*}{\alpha_3^*} \to \frac{3}{2}$$

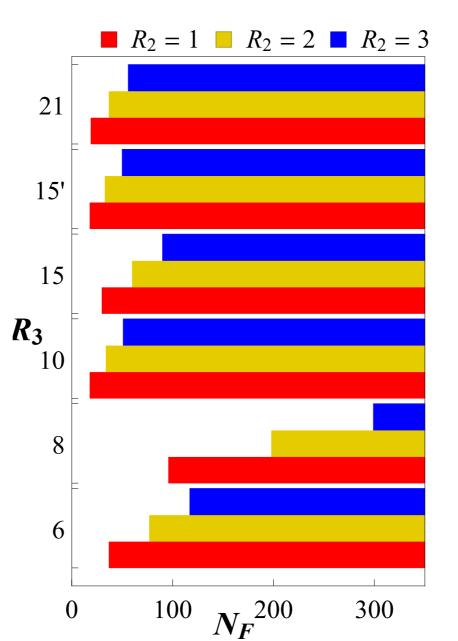
weak becomes the new strong

**UV** critical surface

$$\delta \alpha_3(\Lambda)$$



 $\mathbf{FP_3}$   $\alpha_3^* > 0$   $\alpha_2^* = 0$ 







$$\alpha_2^* > 0$$

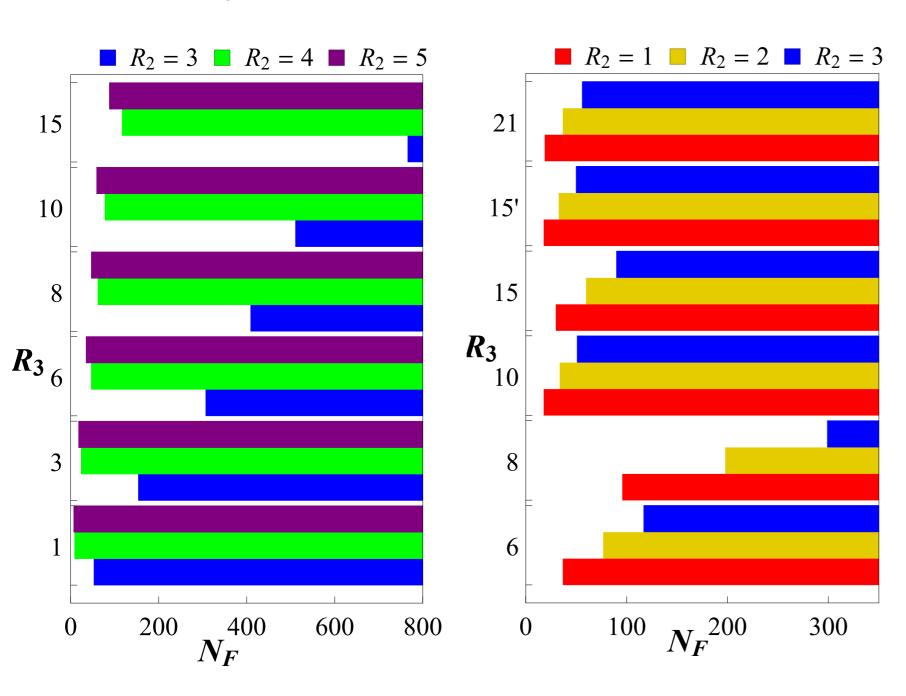
$$\alpha_3^* = 0$$

$$\alpha_3^* = 0$$

$$FP_3$$

$$\alpha_3^* > 0$$

$$\alpha_2^* = 0$$







$$\alpha_2^* > 0$$

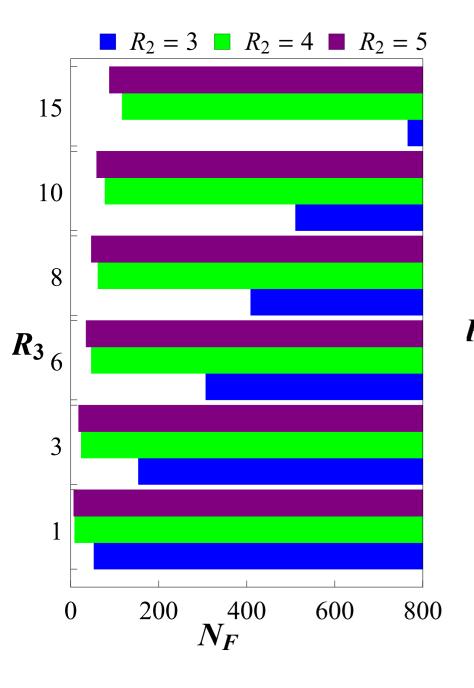
$$\alpha_3^* = 0$$

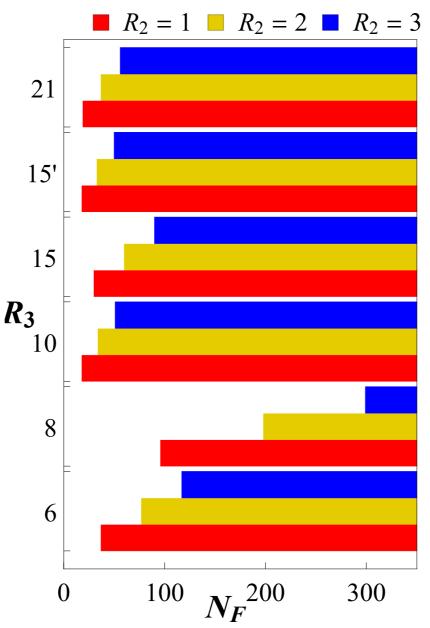
$$FP_3$$

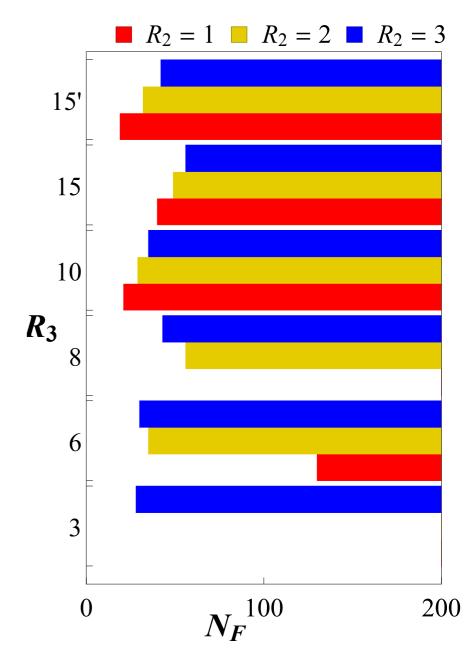
$$\alpha_3^* > 0$$
$$\alpha_2^* = 0$$

$$\mathrm{FP}_4$$

$$\alpha_2^*, \alpha_3^* > 0$$

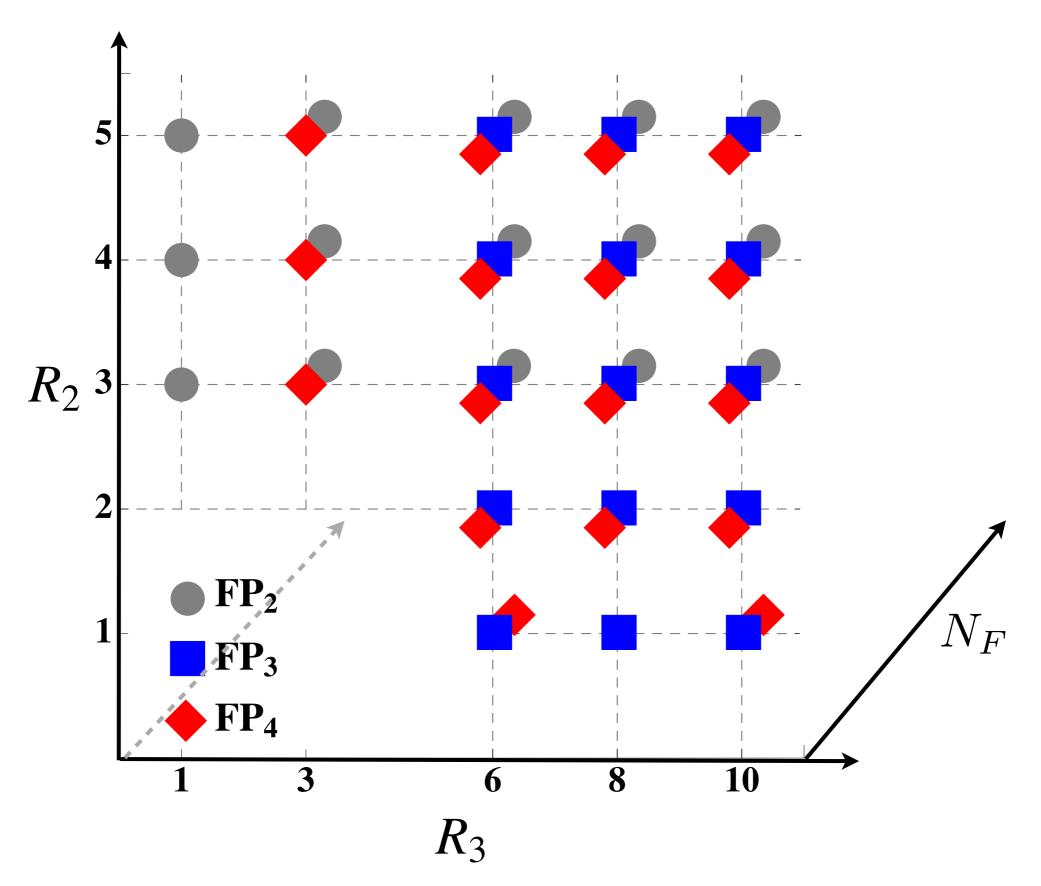






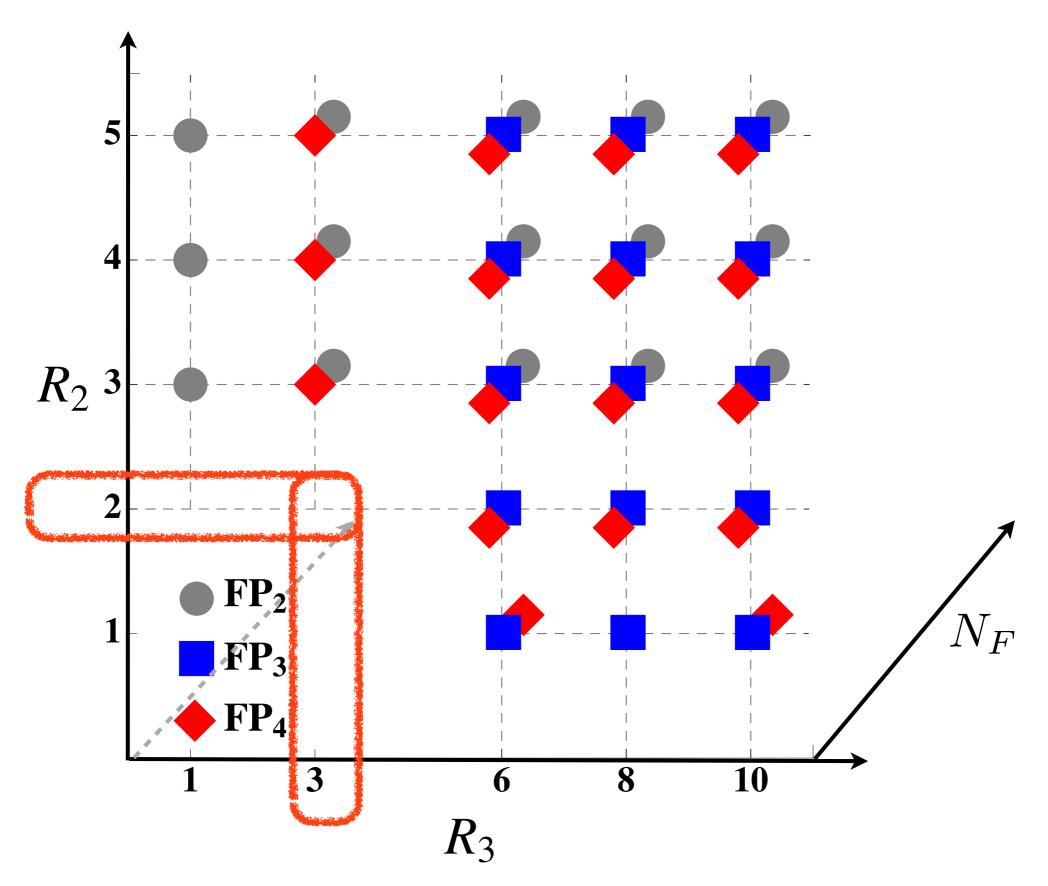


## summary of fixed points





## summary of fixed points



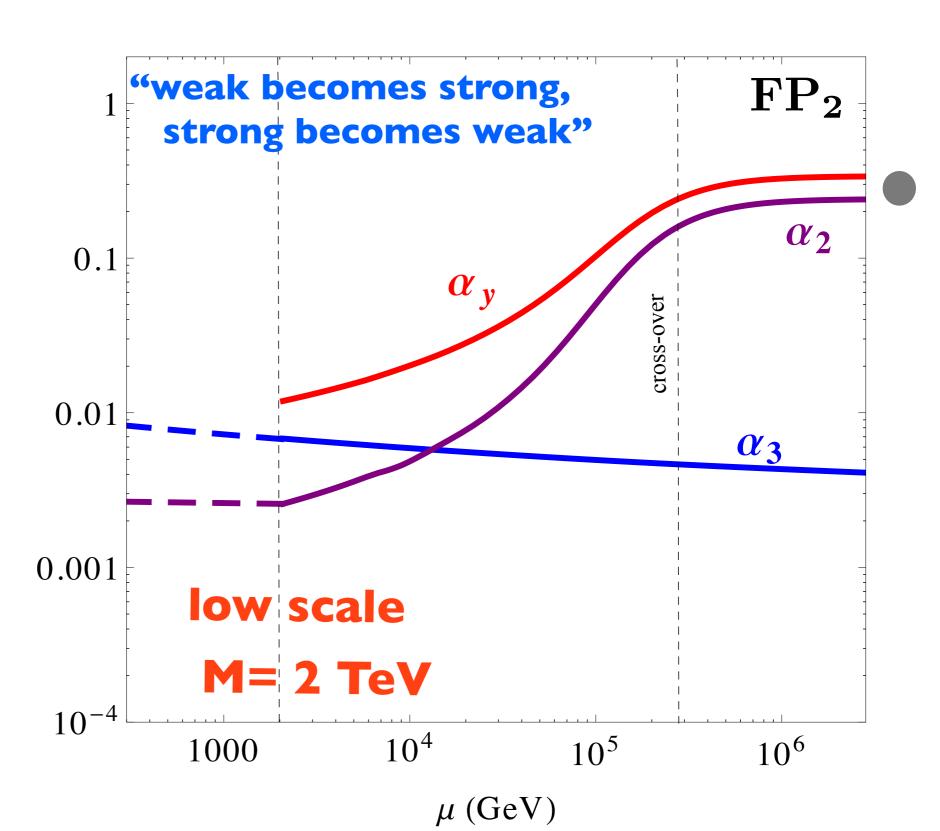


| model        | parameter           | UV fixed points |            |              | tuno                  |
|--------------|---------------------|-----------------|------------|--------------|-----------------------|
| modei        | $(R_3, R_2, N_F)$   | $lpha_3^*$      | $lpha_2^*$ | $\alpha_y^*$ | type                  |
| A            | $({f 1},{f 4},12)$  | 0               | 0.2407     | 0.3385       | $\mathbf{FP_2} loop$  |
| $\mathbf{B}$ | (10 1 20)           | 0.1287          | 0          | 0.1158       | $FP_3$                |
| Б            | (10, 1, 30)         | 0.1292          | 0.2769     | 0.1163       | $\operatorname{FP}_4$ |
|              |                     | 0.3317          | 0          | 0.0995       | $\mathrm{FP}_3$       |
| $\mathbf{C}$ | (10, 4, 80)         | 0.0503          | 0.0752     | 0.0292       | $\operatorname{FP}_4$ |
|              |                     | 0               | 0.8002     | 0.1500       | $\mathbf{FP_2}$       |
| D            | $({f 3},{f 4},290)$ | 0               | 0.0895     | 0.0066       | $\mathbf{FP_2}$       |
|              |                     | 0.0416          | 0.0615     | 0.0056       | $\operatorname{FP}_4$ |
| $\mathbf{E}$ | (3, 3, 72)          | 0.1499          | 0.2181     | 0.0471       | $\mathrm{FP_4}$       |



### model A

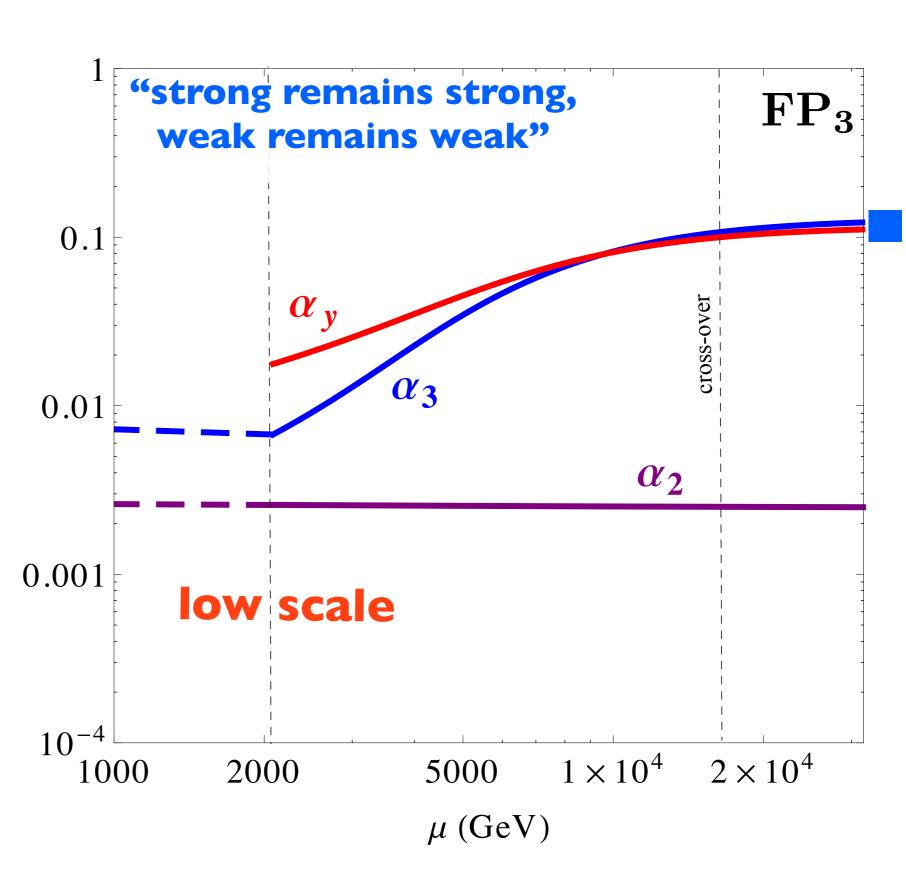
 $(R_3, R_2, N_F) = (1,4,12)$ 





### model B

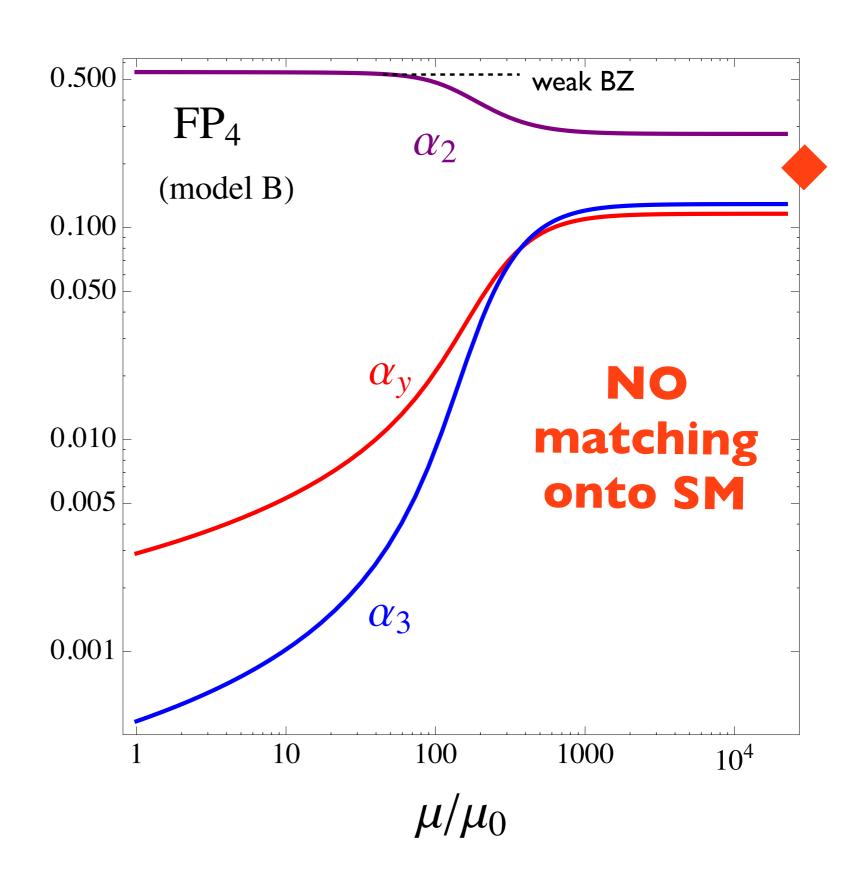
 $(R_3, R_2, N_F) = (10,1,30)$ 





### model B

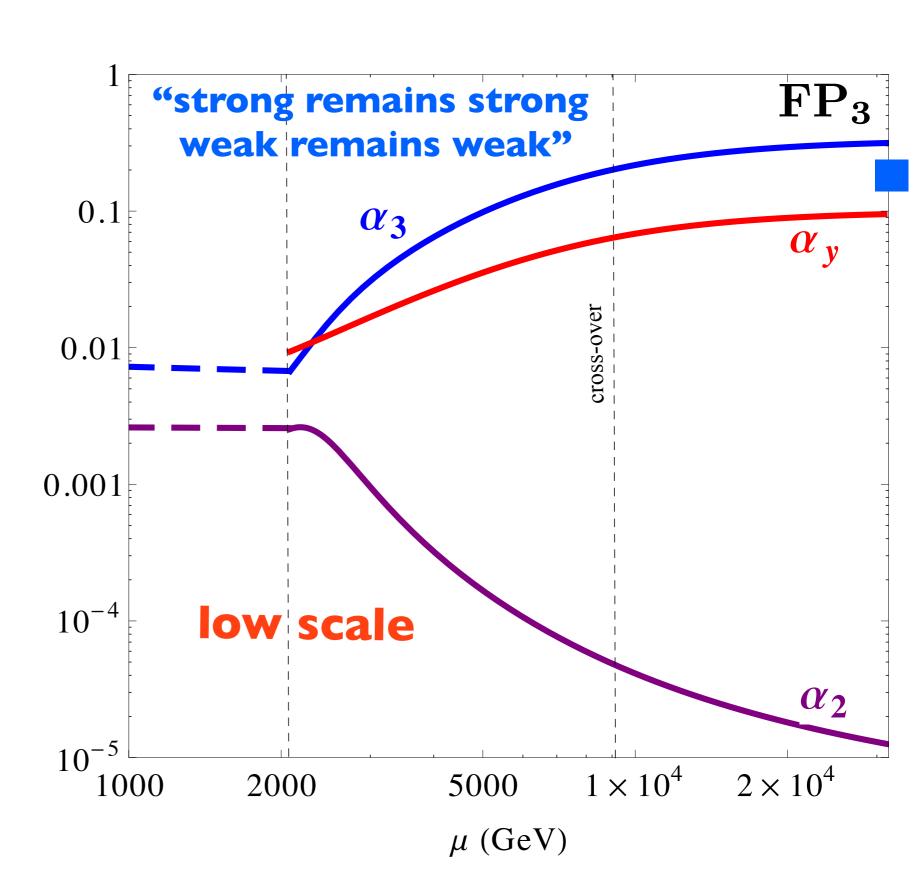
 $(R_3, R_2, N_F) = (10,1,30)$ 





#### model C

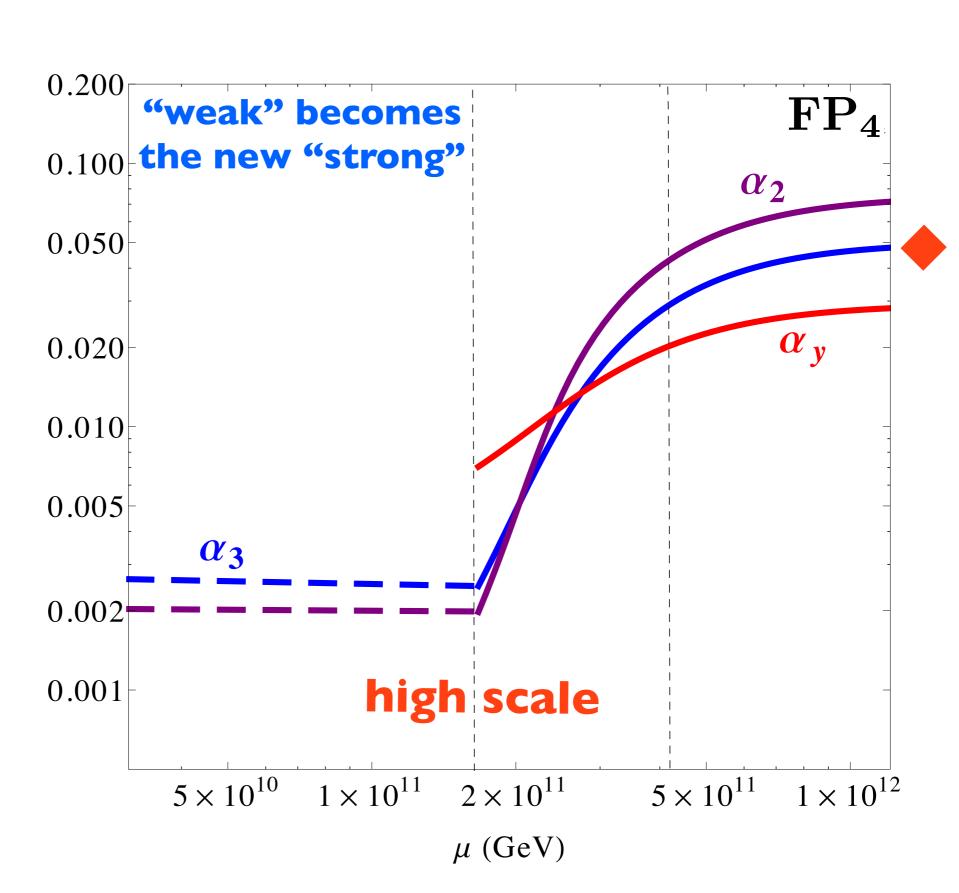
 $(R_3, R_2, N_F) = (10,4,80)$ 





#### model C

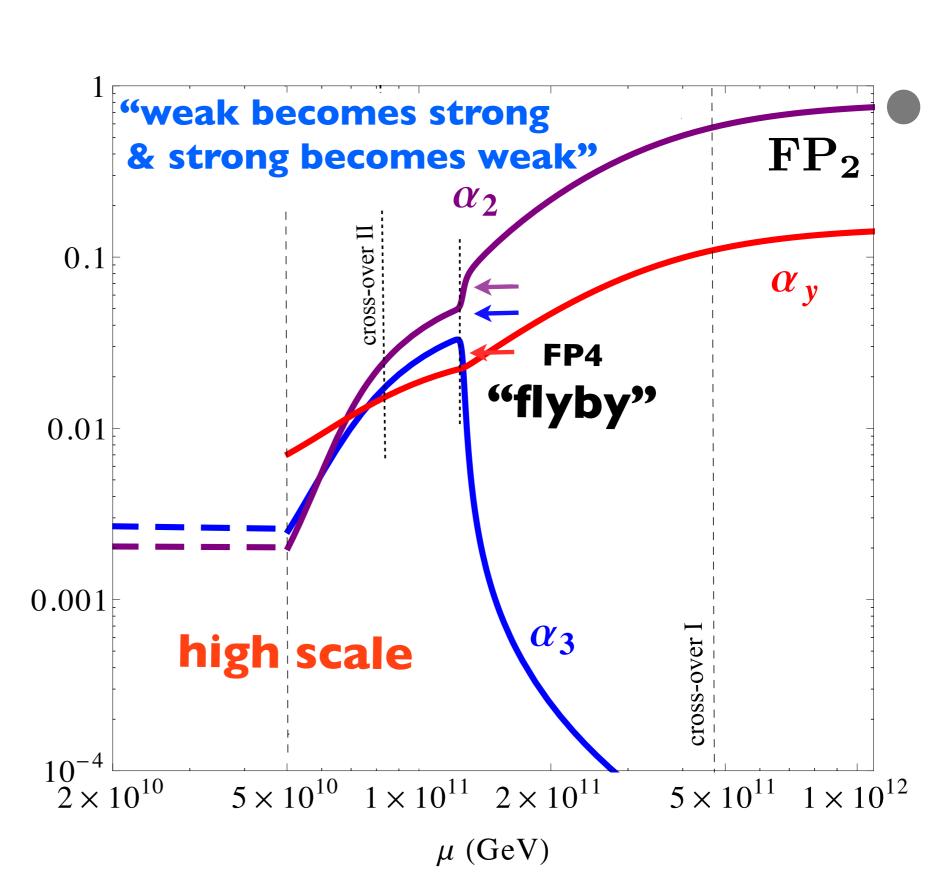
 $(R_3, R_2, N_F) = (10,4,80)$ 





#### model C

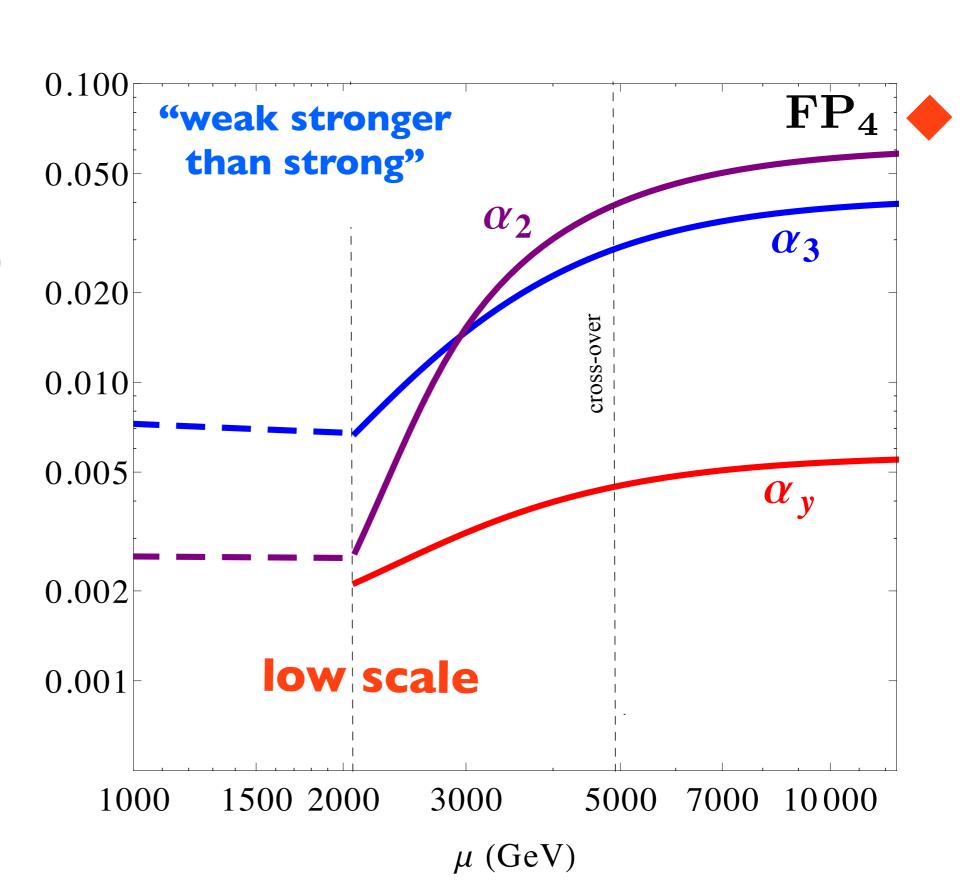
 $(R_3, R_2, N_F) = (10,4,80)$ 





#### model D

 $(R_3, R_2, N_F) = (3,4,290)$ 





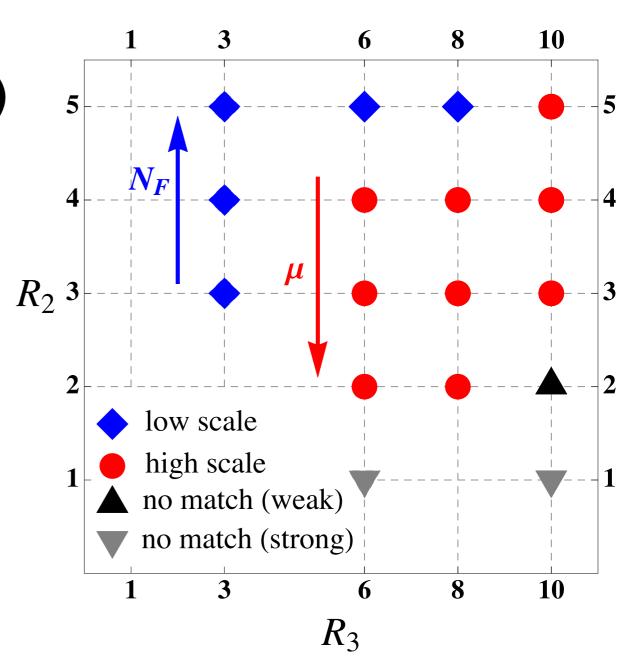
# summary of SM matching: when it works

partially interacting FP (one safe, one free)

genuinely, except in very special circumstances

fully interacting FP (both safe)

for most reps - see plot:





## asymptotic safety

## collider phenomenology



## phenomenology

# assume low scale matching some BSM masses within TeV energy range

```
assume R_3 \neq 1 for LHC (R_3 = 1 \text{ can be tested at future } e^+e^- \text{ colliders})
```

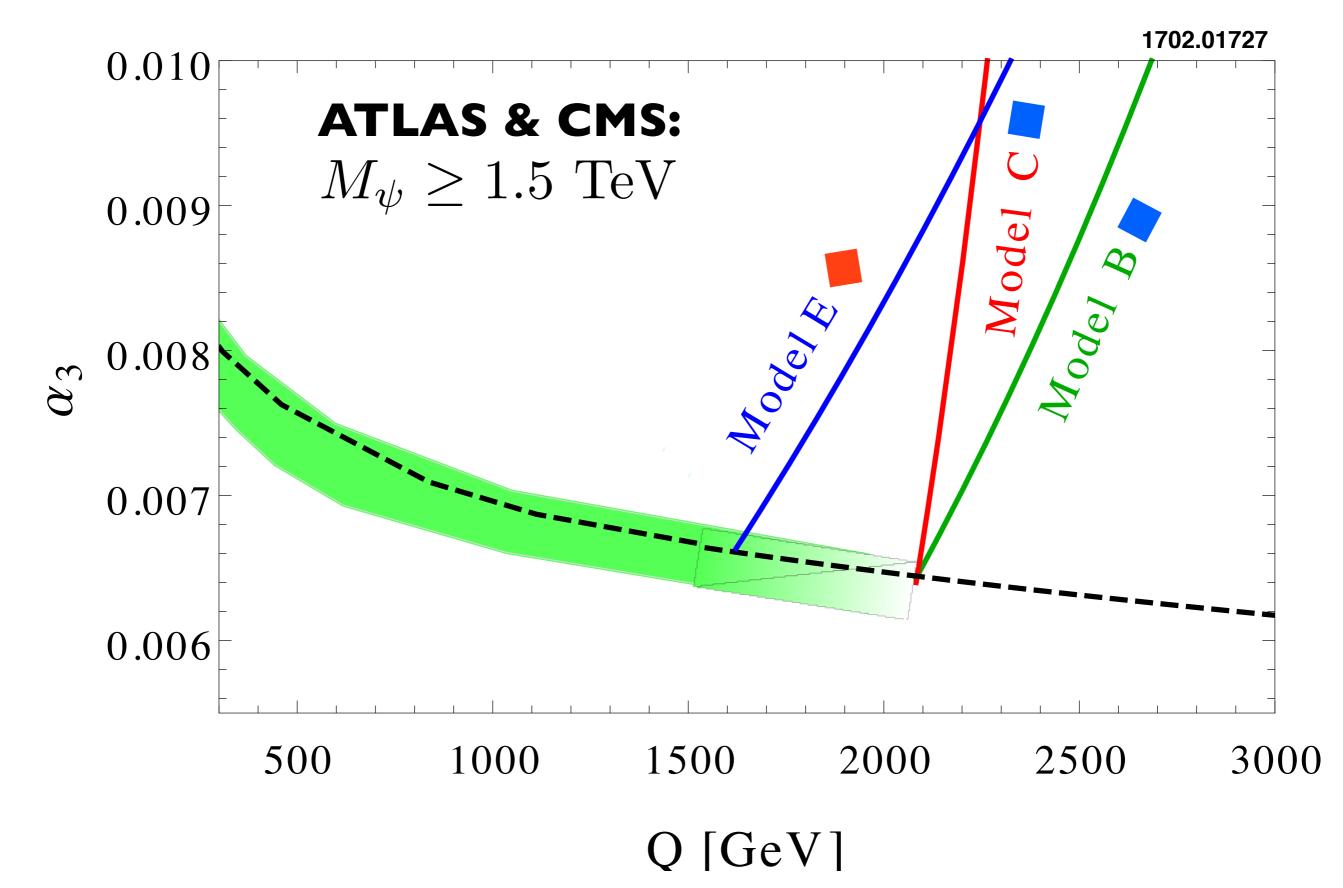
flavor symmetry: stable BSM fermions broken flavor symmetry: lightest BSM fermion stable

#### constraints from

running couplings
the weak sector
long-lived QCD bound states (R hadrons)
di-boson searches

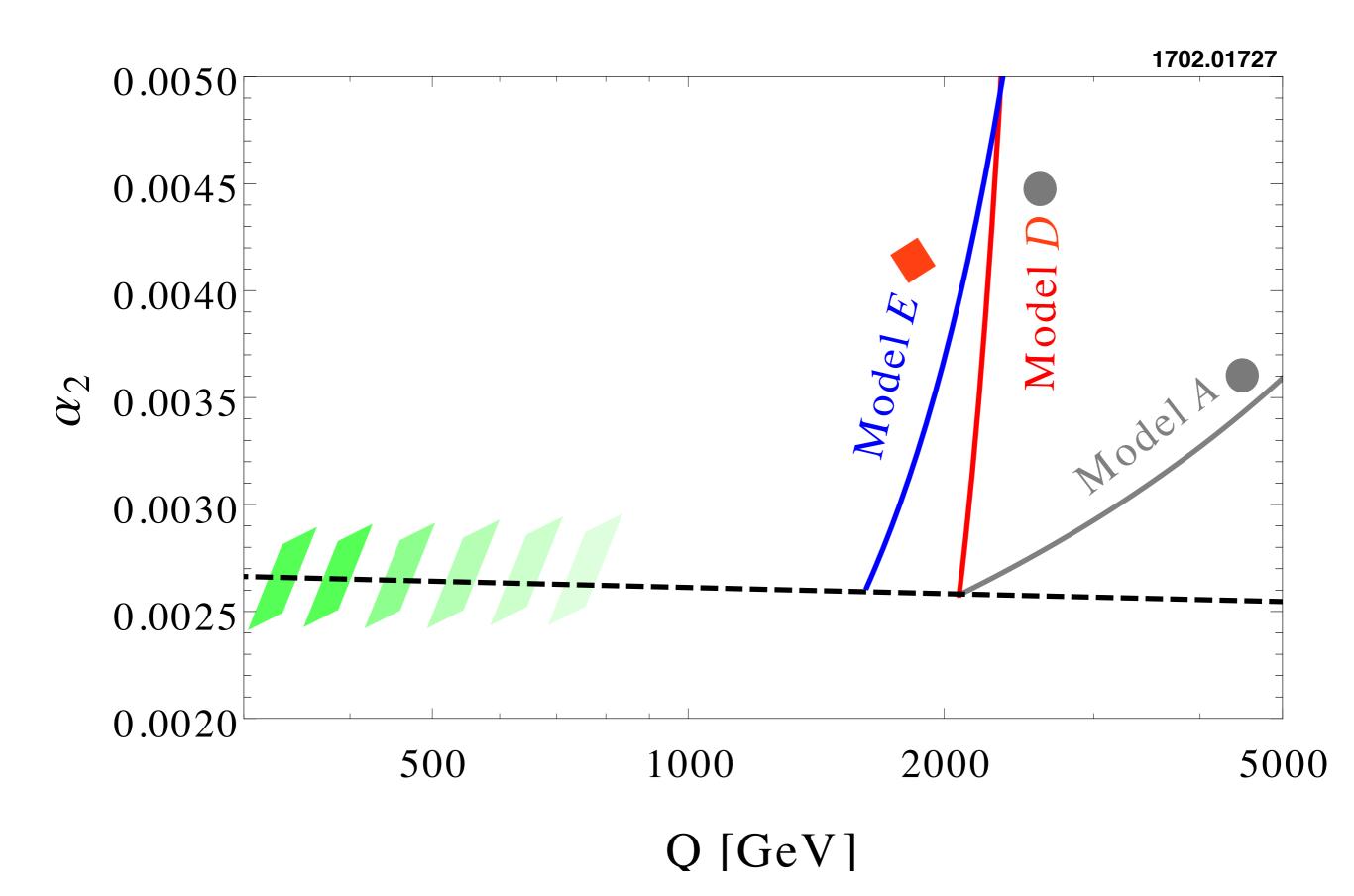


# SU(3) BSM running





# SU(2) BSM running





# di-boson spectra and resonances

#### assume resonant production of BSM scalars

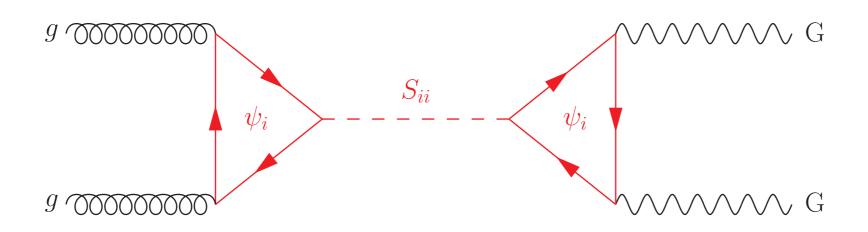
$$M_S < \sqrt{s}$$

$$M_S < 2M_{\psi}$$

"low Ms"  $M_S \lesssim M_\psi$ 

"high Ms"  $M_{\psi} \lesssim M_S < 2 M_{\psi}$ 

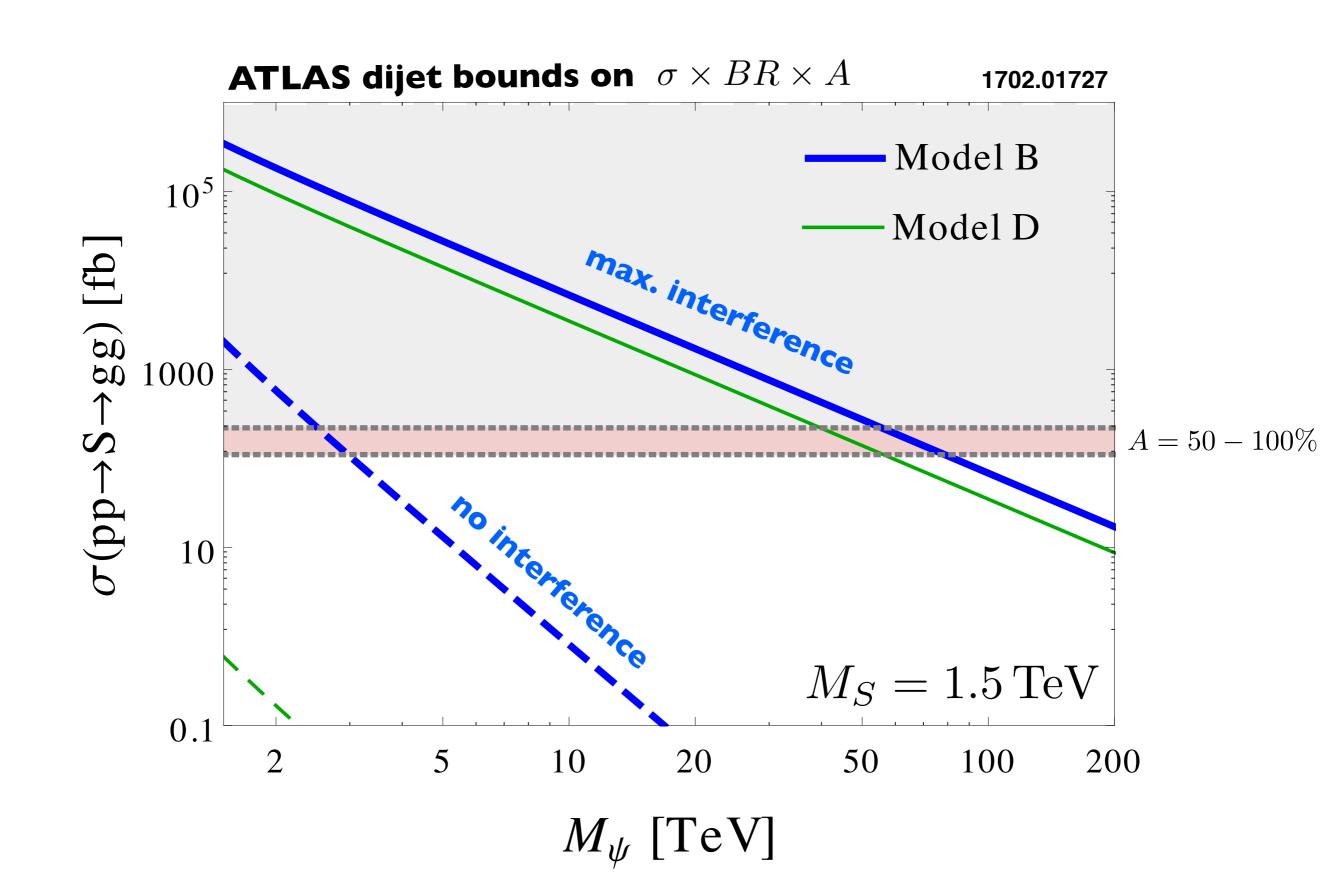
loop-mediated decay into  $GG = gg, \gamma\gamma, ZZ, Z\gamma, \text{ or } WW$ 



interference effects

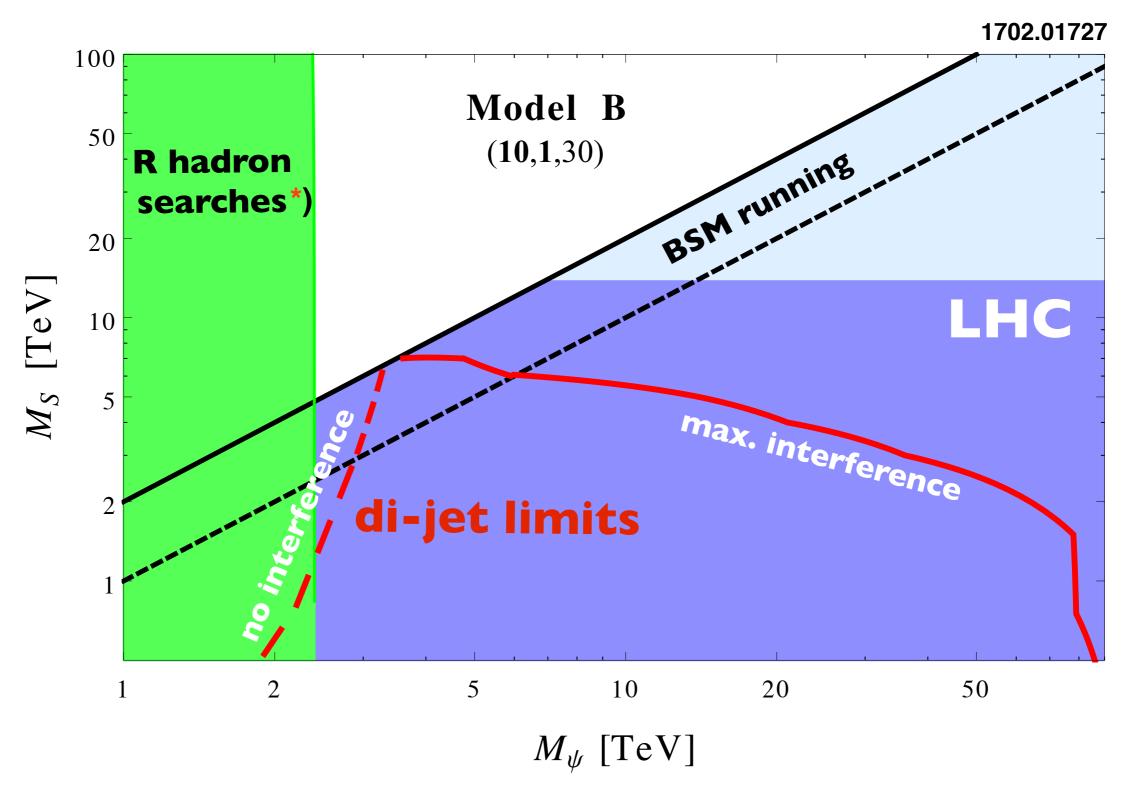


## dijet cross section





### mass exclusion limits



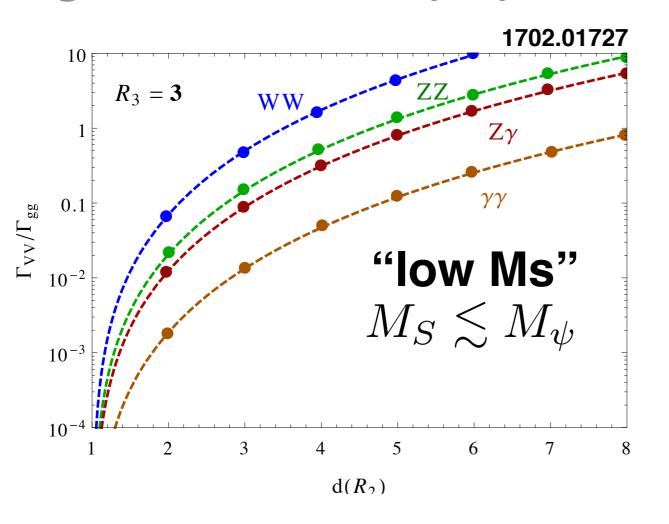
\*) fudged from 13 TeV
ATLAS + CMS gluino analysis

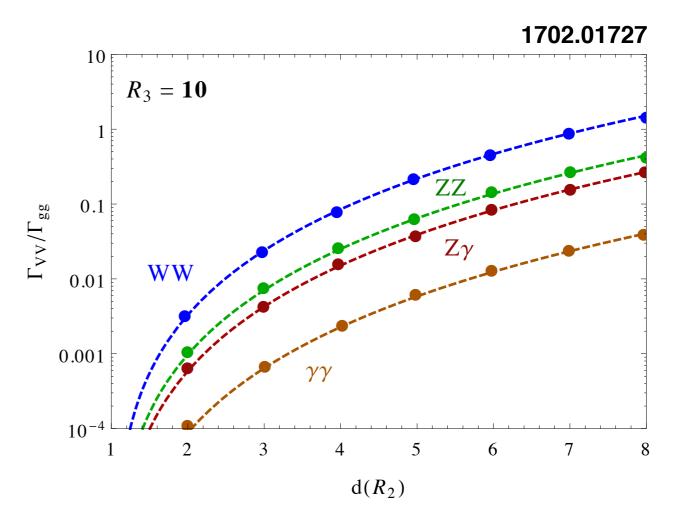


# decays into electroweak gauge bosons

further signatures if  $d(R_2) \neq 1$ 

general scalar resonance decaying into  $WW, ZZ, Z\gamma, \gamma\gamma$  growth with dim(R2)







# decays into electroweak gauge bosons

#### "reduced" decay widths

$$\bar{\Gamma}_{VV} = \frac{1}{F} \frac{\Gamma_{VV}}{\Gamma_{gg}}, \quad \text{with} \quad F = \left(\frac{4}{3} \frac{C_2(R_2)}{C_2(R_3)}\right)^2$$

#### for small hypercharge coupling

$$\bar{\Gamma}_{WW} = \frac{\alpha_2^2}{\alpha_3^2}, \quad \bar{\Gamma}_{ZZ} \approx \frac{1}{2} \frac{\alpha_2^2}{\alpha_3^2}, \quad \bar{\Gamma}_{Z\gamma} \approx \frac{\alpha_1}{\alpha_3} \frac{\alpha_2}{\alpha_3}, \quad \bar{\Gamma}_{\gamma\gamma} \approx \frac{1}{2} \frac{\alpha_1^2}{\alpha_3^2}$$

#### modifications for "high Ms":

$$\mathbf{FP_2} \qquad \bar{\Gamma}_{WW}, \bar{\Gamma}_{ZZ}, \bar{\Gamma}_{Z\gamma} \qquad \bar{\Gamma}_{\gamma\gamma} ?$$

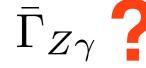
$$\mathbf{FP_3} \qquad \bar{\Gamma}_{WW}, \bar{\Gamma}_{ZZ}, \bar{\Gamma}_{Z\gamma}, \bar{\Gamma}_{Z\gamma}, \bar{\Gamma}_{\gamma\gamma} ?$$

$$\mathbf{FP_4}$$

$$\mathbf{FP_4} \qquad \bar{\Gamma}_{WW}, \bar{\Gamma}_{ZZ} \qquad \bar{\Gamma}_{\gamma\gamma}$$









## conclusions

### asymptotic safety provides

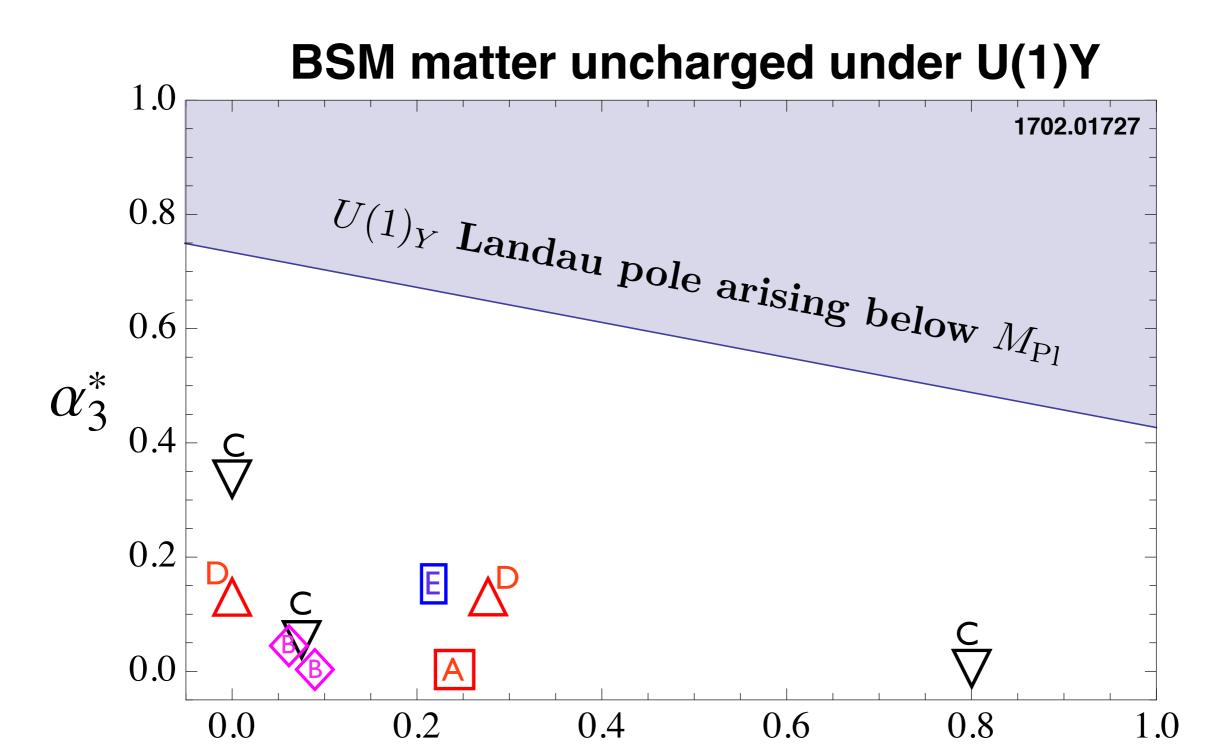
directions for model building can be tested at colliders



## extra material



## U(1)Y BSM





## U(1)Y BSM

#### BSM matter charged under U(1)Y

(to appear)

| model        | parameter                   | UV fixed points |              |              | AF for    | info                       |
|--------------|-----------------------------|-----------------|--------------|--------------|-----------|----------------------------|
|              | $(R_3, R_2, N_F)$           | $lpha_3^*$      | $\alpha_2^*$ | $\alpha_y^*$ | $U(1)_Y$  | 11110                      |
| A            | ( <b>1</b> , <b>4</b> ,12)  | 0               | 0.2407       | 0.3385       | Y > 0.228 | FP <sub>2</sub> ●          |
| В            | $({\bf 10},{\bf 1},30)$     | 0.1287          | 0            | 0.1158       | Y > 0.107 | $\mathbf{FP_3}$            |
|              |                             | 0.1292          | 0.2769       | 0.1163       | Y > 0.114 | $\mathbf{FP_4} \ lack$     |
| $\mathbf{C}$ | $({f 10},{f 4},80)$         | 0.3317          | 0            | 0.0995       | Y > 0.024 | $FP_3$                     |
|              |                             | 0.0503          | 0.0752       | 0.0292       | Y > 0.050 | $\mathbf{FP_4} \ lack$     |
|              |                             | 0               | 0.8002       | 0.1500       | Y > 0.018 | $\mathbf{FP_2}  lacktrian$ |
| D            | ( <b>3</b> , <b>4</b> ,290) | 0               | 0.0895       | 0.0066       | Y > 0.042 | $\mathbf{FP_2}  lacktrian$ |
|              |                             | 0.0416          | 0.0615       | 0.0056       | Y > 0.052 | $\mathbf{FP_4} \ lack$     |
| ${f E}$      | (3, 3, 72)                  | 0.1499          | 0.2181       | 0.0471       | Y > 0.073 | $\mathbf{FP_4} \ lack$     |

lower bounds on hypercharge



# SU(2) BSM running

