New constraints on the 3-3-1 model with right-handed neutrinos

Ernany R. Schmitz

with B. L. Sánchez-Vega and J. C. Montero

arXiv:1612.03827

Open Questions in Particle Physics and Cosmology Workshop

April 3rd, 2017

Bonn-Cologne Graduate School of Physics and Astronomy

Outline

- The Model
 - Gauge group
 - Matter Content
 - Lagrangian
- $oxed{2}$ The Model with \mathbb{Z}_2 symmetry
- 3 The Model with soft \mathbb{Z}_2 breaking terms
 - $\mu_4^2 \chi^\dagger \eta$ term
 - $\frac{f}{\sqrt{2}}\epsilon_{ijk}\eta_i\rho_j\chi_k$ term
- 4 Summary and Conclusions

Outline

- The Model
 - Gauge group
 - Matter Content
 - Lagrangian
- 2 The Model with \mathbb{Z}_2 symmetry
- 3 The Model with soft \mathbb{Z}_2 breaking terms
 - $\mu_4^2 \chi^{\dagger} \eta$ term
 - $\frac{f}{\sqrt{2}}\epsilon_{ijk}\eta_i\rho_j\chi_k$ term
- 4 Summary and Conclusions

3-3-1:
$$SU(3)_L \otimes U(1)_N$$

$$\downarrow \langle \chi \rangle$$

$$SM: SU(2)_L \otimes U(1)_Y$$

$$\downarrow \langle \rho \rangle, \langle \eta \rangle$$

$$U(1)_Q$$

- Dark matter;
- Neutrino masses
- Chiral anomaly free

3-3-1:
$$SU(3)_L \otimes U(1)_N$$

$$\downarrow \langle \chi \rangle$$

$$SM: SU(2)_L \otimes U(1)_Y$$

$$\downarrow \langle \rho \rangle, \langle \eta \rangle$$

$$U(1)_Q$$

- Dark matter;
- Neutrino masses;
- Chiral anomaly free.

3-3-1:
$$SU(3)_L \otimes U(1)_N$$

$$\downarrow \langle \chi \rangle$$

$$SM: SU(2)_L \otimes U(1)_Y$$

$$\downarrow \langle \rho \rangle, \langle \eta \rangle$$

$$U(1)_Q$$

- Dark matter;
- Neutrino masses;
- Chiral anomaly free.

3-3-1:
$$SU(3)_L \otimes U(1)_N$$

$$\downarrow \langle \chi \rangle$$

$$SM: SU(2)_L \otimes U(1)_Y$$

$$\downarrow \langle \rho \rangle, \langle \eta \rangle$$

$$U(1)_Q$$

- Dark matter;
- Neutrino masses:
- Chiral anomaly free.

Outline

- The Model
 - Gauge group
 - Matter Content
 - Lagrangian
- 2 The Model with \mathbb{Z}_2 symmetry
- 3 The Model with soft \mathbb{Z}_2 breaking terms
 - $\mu_4^2 \chi^{\dagger} \eta$ term
 - $\frac{f}{\sqrt{2}}\epsilon_{ijk}\eta_i\rho_j\chi_k$ term
- 4 Summary and Conclusions

Matter Content

Scalar triplets

$$\eta = \left(\begin{array}{c} \eta_1^0 \\ \eta_2^- \\ \eta_3^0 \end{array} \right), \quad \rho = \left(\begin{array}{c} \rho_1^+ \\ \rho_2^0 \\ \rho_3^+ \end{array} \right), \quad \chi = \left(\begin{array}{c} \chi_1^0 \\ \chi_2^- \\ \chi_3^0 \end{array} \right)$$

Left-handed fermions

$$f_{aL} = \begin{pmatrix} \nu_a \\ e_a \\ N_a^c \end{pmatrix}_L$$
, $Q_L = \begin{pmatrix} u_1 \\ d_1 \\ u_4 \end{pmatrix}_L$, $Q_{bL} = \begin{pmatrix} d_b \\ u_b \\ d_{b+2} \end{pmatrix}_L$

where a = 1, 2, 3 and b = 2, 3

Matter Content

Scalar triplets

$$\eta = \left(\begin{array}{c} \eta_1^0 \\ \eta_2^- \\ \eta_3^0 \end{array} \right), \quad \rho = \left(\begin{array}{c} \rho_1^+ \\ \rho_2^0 \\ \rho_3^+ \end{array} \right), \quad \chi = \left(\begin{array}{c} \chi_1^0 \\ \chi_2^- \\ \chi_3^0 \end{array} \right)$$

Left-handed fermions

$$f_{aL} = \begin{pmatrix} v_a \\ e_a \\ N_a^c \end{pmatrix}_L, \quad Q_L = \begin{pmatrix} u_1 \\ d_1 \\ u_4 \end{pmatrix}_L, \quad Q_{bL} = \begin{pmatrix} d_b \\ u_b \\ d_{b+2} \end{pmatrix}_L,$$

where a = 1, 2, 3 and b = 2, 3.

Matter content

Right-handed fermions

 e_{aR} , u_{sR} , d_{tR} are singlets with respect to SU(3)_L

where s = 1, ..., 4 and t = 1, ..., 5.

Outline

- The Model
 - Gauge group
 - Matter Content
 - Lagrangian
- 2 The Model with \mathbb{Z}_2 symmetry
- 3 The Model with soft \mathbb{Z}_2 breaking terms
 - $\mu_4^2 \chi^{\dagger} \eta$ term
 - $\frac{f}{\sqrt{2}}\epsilon_{ijk}\eta_i\rho_j\chi_k$ term
- 4 Summary and Conclusions

$\mathcal{L}_{\mathrm{Yuk}}$

$$\mathcal{L}_{\mathrm{Yuk}} = \mathcal{L}_{\mathrm{Yuk}}^{
ho} + \mathcal{L}_{\mathrm{Yuk}}^{\eta} + \mathcal{L}_{\mathrm{Yuk}}^{\chi}$$

$$\begin{split} \mathcal{L}_{\mathrm{Yuk}}^{\rho} &= \alpha_t \bar{Q}_L d_{tR} \rho + \alpha_{bs} \bar{Q}_{bL} u_{sR} \rho^* + \\ \mathsf{Y}_{aa'} \varepsilon_{ijk} \left(\bar{f}_{aL} \right)_i \left(f_{a'L} \right)_j^c \left(\rho^* \right)_k + \mathsf{Y}'_{aa'} \bar{f}_{aL} \mathsf{e}_{a'R} \rho + \mathrm{H.c.}, \end{split}$$

where a, a', i, j, k = 1, 2, 3; b = 2, 3; s = 1, ..., 5; t = 1, ..., 4

$\mathcal{L}_{\mathrm{Yuk}}$

$$\mathcal{L}_{\mathrm{Yuk}} = \mathcal{L}_{\mathrm{Yuk}}^{
ho} + \mathcal{L}_{\mathrm{Yuk}}^{\eta} + \mathcal{L}_{\mathrm{Yuk}}^{\chi}$$

$$\begin{split} & \mathcal{L}_{\text{Yuk}}^{\rho} = \alpha_{t} \bar{Q}_{L} d_{tR} \rho + \alpha_{bs} \bar{Q}_{bL} u_{sR} \rho^{*} + \\ & Y_{aa'} \varepsilon_{ijk} \left(\bar{f}_{aL} \right)_{i} \left(f_{a'L} \right)_{j}^{c} \left(\rho^{*} \right)_{k} + Y'_{aa'} \bar{f}_{aL} e_{a'R} \rho + \text{H.c.}, \end{split}$$

where a, a', i, j, k = 1, 2, 3; b = 2, 3; s = 1, ..., 5; t = 1, ..., 4.

$$\mathcal{L}_{\text{Yuk}}^{\eta} = \beta_s \bar{Q}_L u_{sR} \eta + \beta_{bt} \bar{Q}_{bL} d_{tR} \eta^* + \text{H.c.},$$

$$\mathcal{L}_{\text{Yuk}}^{\chi} = \gamma_s \bar{Q}_L u_{sR} \chi + \gamma_{bt} \bar{Q}_{bL} d_{tR} \chi^* + \text{H.c.}$$

where
$$b = 2, 3$$
; $s = 1, ..., 5$; $t = 1, ..., 4$

$$\mathcal{L}_{\text{Yuk}}^{\eta} = \beta_s \bar{Q}_L u_{sR} \eta + \beta_{bt} \bar{Q}_{bL} d_{tR} \eta^* + \text{H.c.},$$

$$\mathcal{L}_{\text{Yuk}}^{\chi} = \gamma_s \bar{Q}_L u_{sR} \chi + \gamma_{bt} \bar{Q}_{bL} d_{tR} \chi^* + \text{H.c.}$$

where
$$b = 2, 3$$
; $s = 1, ..., 5$; $t = 1, ..., 4$.

Spontaneous Symmetry breaking

Minimally general vacuum structure

$$\langle \eta \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} v_{\eta_1} \\ 0 \\ 0 \end{pmatrix}, \quad \langle \rho \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_{\rho_2} \\ 0 \end{pmatrix}, \quad \langle \chi \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 0 \\ v_{\chi_3} \end{pmatrix}$$

- $\langle \chi \rangle$: mass to the exotic quarks: d_4, d_5 and u_4 ;
- $\langle \rho \rangle$: mass to e, μ , τ ; d_1 , u_2 , u_3 quarks; 2 neutrinos;
- $\langle \eta \rangle$: mass to u_1, d_2, d_3 quarks.

Scalar Potential

$$V(\eta, \rho, \chi) = V_{\mathbb{Z}_2}(\eta, \rho, \chi) + V_{\mathbb{Z}_2}(\eta, \rho, \chi);$$

$$V_{\mathbb{Z}_{2}}(\eta, \rho, \chi) = -\mu_{1}^{2} \eta^{\dagger} \eta - \mu_{2}^{2} \rho^{\dagger} \rho - \mu_{3}^{2} \chi^{\dagger} \chi$$

$$+ \lambda_{1} (\eta^{\dagger} \eta)^{2} + \lambda_{2} (\rho^{\dagger} \rho)^{2} + \lambda_{3} (\chi^{\dagger} \chi)^{2}$$

$$+ \lambda_{4} (\chi^{\dagger} \chi) (\eta^{\dagger} \eta) + \lambda_{5} (\chi^{\dagger} \chi) (\rho^{\dagger} \rho)$$

$$+ \lambda_{6} (\eta^{\dagger} \eta) (\rho^{\dagger} \rho) + \lambda_{7} (\chi^{\dagger} \eta) (\eta^{\dagger} \chi)$$

$$+ \lambda_{8} (\chi^{\dagger} \rho) (\rho^{\dagger} \chi) + \lambda_{9} (\eta^{\dagger} \rho) (\rho^{\dagger} \eta)$$

$$+ [\lambda_{10} (\chi^{\dagger} \eta)^{2} + \text{H.c.}];$$

Scalar Potential

$$V(\eta, \rho, \chi) = V_{\mathbb{Z}_2}(\eta, \rho, \chi) + V_{\mathbb{Z}_2}(\eta, \rho, \chi);$$

$$V_{\mathbb{Z}_{2}}(\eta, \rho, \chi) = -\mu_{1}^{2} \eta^{\dagger} \eta - \mu_{2}^{2} \rho^{\dagger} \rho - \mu_{3}^{2} \chi^{\dagger} \chi$$

$$+ \lambda_{1} (\eta^{\dagger} \eta)^{2} + \lambda_{2} (\rho^{\dagger} \rho)^{2} + \lambda_{3} (\chi^{\dagger} \chi)^{2}$$

$$+ \lambda_{4} (\chi^{\dagger} \chi) (\eta^{\dagger} \eta) + \lambda_{5} (\chi^{\dagger} \chi) (\rho^{\dagger} \rho)$$

$$+ \lambda_{6} (\eta^{\dagger} \eta) (\rho^{\dagger} \rho) + \lambda_{7} (\chi^{\dagger} \eta) (\eta^{\dagger} \chi)$$

$$+ \lambda_{8} (\chi^{\dagger} \rho) (\rho^{\dagger} \chi) + \lambda_{9} (\eta^{\dagger} \rho) (\rho^{\dagger} \eta)$$

$$+ [\lambda_{10} (\chi^{\dagger} \eta)^{2} + \text{H.c.}];$$

Scalar Potential

$$V_{\mathbb{Z}}(\eta, \rho, \chi) = -\mu_{4}^{2} \chi^{\dagger} \eta + \lambda_{11} \left(\chi^{\dagger} \eta \right) \left(\eta^{\dagger} \eta \right)$$

$$+ \lambda_{12} \left(\chi^{\dagger} \eta \right) \left(\chi^{\dagger} \chi \right) + \lambda_{13} \left(\chi^{\dagger} \eta \right) \left(\rho^{\dagger} \rho \right)$$

$$+ \lambda_{14} \left(\chi^{\dagger} \rho \right) \left(\rho^{\dagger} \eta \right) + \frac{f}{\sqrt{2}} \epsilon_{ijk} \eta_{i} \rho_{j} \chi_{k} + \text{H.c.}$$

Outline

- The Model
 - Gauge group
 - Matter Content
 - Lagrangian
- $oxed{2}$ The Model with \mathbb{Z}_2 symmetry
- 3 The Model with soft \mathbb{Z}_2 breaking terms
 - $\mu_4^2 \chi^{\dagger} \eta$ term
 - $\frac{f}{\sqrt{2}}\epsilon_{ijk}\eta_i\rho_j\chi_k$ term
- 4 Summary and Conclusions

Transformation

$$\mathbb{Z}_2$$
: $\chi \to -\chi$, $u_{4R} \to -u_{4R}$, $d_{(4,5)R} \to -d_{(4,5)R}$

Most studied 3-3-1 scenario.

- It brings simplicity to the model;
- Possibility of DM through the χ transformation;
- It alleviates FCNC processes, since the u_{4R} and $d_{(4,5)R}$ quarks only interact with one of the triplets, χ .

Transformation

$$\mathbb{Z}_2$$
: $\chi \to -\chi$, $u_{4R} \to -u_{4R}$, $d_{(4,5)R} \to -d_{(4,5)R}$

Most studied 3-3-1 scenario.

- It brings simplicity to the model;
- Possibility of DM through the χ transformation;
- It alleviates FCNC processes, since the u_{4R} and $d_{(4,5)R}$ quarks only interact with one of the triplets, χ .

Transformation

$$\mathbb{Z}_2$$
: $\chi \to -\chi$, $u_{4R} \to -u_{4R}$, $d_{(4,5)R} \to -d_{(4,5)R}$

Most studied 3-3-1 scenario.

- It brings simplicity to the model;
- Possibility of DM through the χ transformation;
- It alleviates FCNC processes, since the u_{4R} and $d_{(4,5)R}$ quarks only interact with one of the triplets, χ .

Transformation

$$\mathbb{Z}_2$$
: $\chi \to -\chi$, $u_{4R} \to -u_{4R}$, $d_{(4,5)R} \to -d_{(4,5)R}$

Most studied 3-3-1 scenario.

- It brings simplicity to the model;
- Possibility of DM through the χ transformation;
- It alleviates FCNC processes, since the u_{4R} and $d_{(4,5)R}$ quarks only interact with one of the triplets, χ .

U(1) symmetries									
	Q_L	Q _{iL}	(u _{aR} , u _{4R})	$\left(d_{aR},d_{(4,5)R}\right)$	f _{aL}	e _{aR}	η	ρ	χ
U(1) _N	1/3	0	2/3	-1/3	-1/3	-1	-1/3	2/3	-1/3
$U(1)_B$	1/3	1/3	1/3	1/3	0	0	0	0	0
U(1) _{PQ}	1	-1	0	0	-1/2	-3/2	1	1	1

NG boson

$$J = \frac{1}{N_J} \left(\frac{v_{\eta_1} v_{\chi_3}}{v_{\rho_2}} \text{Im } \rho_2^0 + v_{\chi_3} \text{Im } \eta_1^0 + v_{\eta_1} \text{Im } \chi_3^0 \right)$$

g_{eeJ} coupling

- This coupling implies an energy loss channel through the process $\gamma + e^- \rightarrow e^- + J$;
- Evolution of red-giant stars: $|g_{e\bar{e},l}| \lesssim g_{\max} \equiv 10^{-13}$
- ullet Our model: $g_{ear{e}J}=rac{\sqrt{2}m_e v_{\eta_1} v_{\chi_3}}{N_J v_{co}^2}$ because
 - $\mathcal{L}_{\text{Yulk}}^{\rho} \supset \mathsf{Y}_{aa'}^{\prime} \bar{t}_{aL} e_{a'R} \rho + \mathrm{H.c.}.$

NG boson

$$J = \frac{1}{N_J} \left(\frac{v_{\eta_1} v_{\chi_3}}{v_{\rho_2}} \operatorname{Im} \rho_2^0 + v_{\chi_3} \operatorname{Im} \eta_1^0 + v_{\eta_1} \operatorname{Im} \chi_3^0 \right)$$

g_{ee} coupling

- This coupling implies an energy loss channel through the process $\gamma + e^- \rightarrow e^- + J$;
- Evolution of red-giant stars: $|g_{e\bar{e}J}| \lesssim g_{\text{max}} \equiv 10^{-13}$;
- Our model: $g_{e\bar{e}J} = \frac{\sqrt{2m_e V_{\eta_1} V_{\chi_3}}}{N_J V_{\rho_2}^2}$ because $\mathcal{L}_{\text{Vyyk}}^{\rho} \supset \text{Y}_{\gamma\gamma'}^{\prime} \bar{f}_{aL} e_{a'R} \rho + \text{H.c.}.$

NG boson

$$J = \frac{1}{N_J} \left(\frac{v_{\eta_1} v_{\chi_3}}{v_{\rho_2}} \operatorname{Im} \rho_2^0 + v_{\chi_3} \operatorname{Im} \eta_1^0 + v_{\eta_1} \operatorname{Im} \chi_3^0 \right)$$

g_{ee} coupling

- This coupling implies an energy loss channel through the process $\gamma + e^- \rightarrow e^- + J$;
- Evolution of red-giant stars: $|g_{e\bar{e}J}| \lesssim g_{\text{max}} \equiv 10^{-13}$;
- Our model: $g_{e\bar{e}J} = \frac{\sqrt{2m_e V_{\eta_1} V_{\chi_3}}}{N_J V_{\rho_2}^2}$ because $\mathcal{L}_{\chi_{\mu_1}}^{\rho} \supset Y'_{\sigma \chi} \bar{f}_{\sigma L} e_{\chi R} \rho + \text{H.c.}$.

NG boson

$$J = \frac{1}{N_J} \left(\frac{v_{\eta_1} v_{\chi_3}}{v_{\rho_2}} \operatorname{Im} \rho_2^0 + v_{\chi_3} \operatorname{Im} \eta_1^0 + v_{\eta_1} \operatorname{Im} \chi_3^0 \right)$$

g_{eeJ} coupling

- This coupling implies an energy loss channel through the process $\gamma + e^- \rightarrow e^- + J$;
- Evolution of red-giant stars: $|g_{e\bar{e}J}| \lesssim g_{\text{max}} \equiv 10^{-13}$;
- Our model: $g_{e\bar{e}J} = \frac{\sqrt{2}m_e v_{\eta_1} v_{\chi_3}}{N_J v_{\rho_2}^2}$ because $\mathcal{L}_{\text{Vuk}}^{\rho} \supset \text{Y}_{22'}^{\prime} \bar{f}_{aL} e_{a'R} \rho + \text{H.c.}.$

Together with $M_{W^\pm}^2=rac{g_L^2}{4}\left(v_{\eta_1}^2+v_{
ho_2}^2
ight)=rac{g_L^2}{4}v_{
m SM}^2$, one finds

$$egin{aligned} v_{\chi_3} &= v_{\chi_3} \left(v_{
ho_2}
ight) \ v_{\chi_3} &\leq v_{\chi_{
m max}} (v_{
ho_2}) \equiv v_{
ho_2} \left[2 g_{
m max}^{-2} m_e^2 / v_{
ho_2}^2 - 1 / \left(1 - v_{
ho_2}^2 / v_{
m SM}^2
ight)
ight]^{-1/2} . \ v_{\chi_{
m max}} \left(v_{
ho_2}
ightarrow v_{
m SM}^-
ight) &\simeq 11.5 \ {
m keV}. \end{aligned}$$

which contradicts $\langle \chi \rangle > \langle \rho \rangle$, $\langle \eta \rangle$, which is assumed at the SSB. **BAD!**

4 and 5 VEVs cases

- 2 NG bosons: J_I and J_R ;
- $Z \rightarrow J_R J_I$, therefore these scenarios are ruled out!

Making the \mathbb{Z}_2 -symmetric model safe

- Add terms which break explicitly the additional U(1) symmetries;
- We explore two soft terms from the \mathbb{Z}_2 -breaking potential: $\mu_4^2 \chi^\dagger \eta$ and $\frac{f}{\sqrt{2}} \epsilon_{ijk} \eta_i \rho_j \chi_k$.

4 and 5 VEVs cases

- 2 NG bosons: J_I and J_R ;
- $Z \rightarrow J_R J_I$, therefore these scenarios are ruled out!

Making the \mathbb{Z}_2 -symmetric model safe

- Add terms which break explicitly the additional U(1) symmetries;
- We explore two soft terms from the \mathbb{Z}_2 -breaking potential: $\mu_4^2 \chi^\dagger \eta$ and $\frac{f}{\sqrt{2}} \epsilon_{ijk} \eta_i \rho_j \chi_k$.

Outline

- The Model
 - Gauge group
 - Matter Content
 - Lagrangian
- 2 The Model with \mathbb{Z}_2 symmetry
- **3** The Model with soft \mathbb{Z}_2 breaking terms
 - $\mu_4^2 \, \chi^\dagger \eta$ term
 - $\frac{\vec{f}}{\sqrt{2}}\epsilon_{ijk}\eta_i\rho_j\chi_k$ term
- 4 Summary and Conclusions

Outline

- The Model
 - Gauge group
 - Matter Content
 - Lagrangian
- 2 The Model with \mathbb{Z}_2 symmetry
- 3 The Model with soft \mathbb{Z}_2 breaking terms
 - $\mu_4^2 \chi^{\dagger} \eta$ term
 - $\frac{f}{\sqrt{2}}\epsilon_{ijk}\eta_i\rho_j\chi_k$ term
- 4 Summary and Conclusions

- 1 NG boson with imaginary components;
- The case $(v_{\eta_1}, v_{\rho_2}, v_{\chi_3})$ is ruled out, because the NG boson has the same form as the earlier case;
- 4 VEVs: $v_{\chi_3} \lesssim 355 \text{ GeV}$.
- 5 VEVs: $v_{\chi_3} \lesssim 355 \text{ GeV}$ if $v_{\rho_2} \simeq v_{\text{SM}}$.

We have used as constraints the W^{\pm} , Z masses, the g_{eeJ} coupling and the positivity of the VEVs.

- 1 NG boson with imaginary components;
- The case $(v_{\eta_1}, v_{\rho_2}, v_{\chi_3})$ is ruled out, because the NG boson has the same form as the earlier case;
- 4 VEVs: $v_{\chi_3} \lesssim 355 \text{ GeV}$.
- 5 VEVs: $v_{\chi_3} \lesssim 355 \text{ GeV}$ if $v_{\rho_2} \simeq v_{\text{SM}}$.

- 1 NG boson with imaginary components;
- The case $(v_{\eta_1}, v_{\rho_2}, v_{\chi_3})$ is ruled out, because the NG boson has the same form as the earlier case;
- 4 VEVs: $v_{\chi_3} \lesssim 355 \text{ GeV}$.
- 5 VEVs: $v_{\chi_3} \lesssim 355 \text{ GeV}$ if $v_{\rho_2} \simeq v_{\text{SM}}$.

$$\mu_4^2 \, \chi^\dagger \eta$$

- 1 NG boson with imaginary components;
- The case $(v_{\eta_1}, v_{\rho_2}, v_{\chi_3})$ is ruled out, because the NG boson has the same form as the earlier case;
- 4 VEVs: $v_{\chi_3} \lesssim 355 \text{ GeV}$.
- 5 VEVs: $v_{\chi_3} \lesssim 355 \text{ GeV}$ if $v_{\rho_2} \simeq v_{\text{SM}}$.

$$\mu_4^2 \chi^\dagger \eta$$

- 1 NG boson with imaginary components;
- The case $(v_{\eta_1}, v_{\rho_2}, v_{\chi_3})$ is ruled out, because the NG boson has the same form as the earlier case;
- 4 VEVs: $v_{\chi_3} \lesssim 355 \text{ GeV}$.
- 5 VEVs: $v_{\chi_3} \lesssim$ 355 GeV if $v_{\rho_2} \simeq v_{\rm SM}$.

Outline

- 1 The Model
 - Gauge group
 - Matter Content
 - Lagrangian
- 2 The Model with \mathbb{Z}_2 symmetry
- 3 The Model with soft \mathbb{Z}_2 breaking terms
 - $\mu_4^2 \chi^{\dagger} \eta$ term
 - $\frac{f}{\sqrt{2}}\epsilon_{ijk}\eta_i\rho_j\chi_k$ term
- 4 Summary and Conclusions

There appear no physical NG bosons, therefore the model is safe regarding the appearance of massless scalars.

Outline

- The Model
 - Gauge group
 - Matter Content
 - Lagrangian
- 2 The Model with \mathbb{Z}_2 symmetry
- 3 The Model with soft \mathbb{Z}_2 breaking terms
 - $\mu_4^2 \chi^{\dagger} \eta$ term
 - $\frac{f}{\sqrt{2}}\epsilon_{ijk}\eta_i\rho_j\chi_k$ term
- 4 Summary and Conclusions

- This approach had not yet been considered in 3-3-1 models;
- Physical NG bosons play an important role at constraining parameters
 - Can interact with matter;
 - ullet Example: $\gamma + e^-
 ightarrow e^- + J \Longrightarrow g_{eeJ}$ coupling.
- ullet \mathbb{Z}_2 -symmetric potential
 - 3 VEVs: bad! $v_{v_0} \leq 11.5 \text{ keV}$.
 - ullet 4 and 5 VEVs: bad! $Z o J_I + J_R$ allowed.
- ullet Softly broken \mathbb{Z}_2
 - $\mu_4^2 \chi^\dagger \eta$: $v_{\chi_3} \lesssim 355 \; {\rm GeV}$ for 4 VEVs. The 5 VEVs case has more freedom:
 - $\frac{t}{\sqrt{2}}\epsilon_{ijk}\eta_i\rho_j\chi_k$: NO massless scalars!

- This approach had not yet been considered in 3-3-1 models;
- Physical NG bosons play an important role at constraining parameters
 - Can interact with matter;
 - Example: $\gamma + e^- \rightarrow e^- + J \Longrightarrow g_{eeJ}$ coupling.
- \mathbb{Z}_2 -symmetric potential
 - 3 VEVs: bad! $v_{v_2} \leq 11.5 \text{ keV}$.
 - 4 and 5 VEVs: bad! $Z \rightarrow J_I + J_R$ allowed.
- ullet Softly broken \mathbb{Z}_2
 - $\mu_4^2 \chi^{\dagger} \eta$: $v_{\chi_3} \lesssim 355 \text{ GeV}$ for 4 VEVs. The 5 VEVs case has
 - $\frac{1}{\sqrt{5}}\epsilon_{ijk}\eta_i\rho_i\chi_k$: NO massless scalars!

- This approach had not yet been considered in 3-3-1 models;
- Physical NG bosons play an important role at constraining parameters
 - Can interact with matter;
 - Example: $\gamma + e^- \rightarrow e^- + J \Longrightarrow g_{eeJ}$ coupling.
- \mathbb{Z}_2 -symmetric potential
- 3 VEVs: bad! $v_{v_2} \lesssim 11.5 \text{ keV}$.
 - 4 and 5 VEVs: bad! $Z \rightarrow J_I + J_R$ allowed.
- ullet Softly broken \mathbb{Z}_2
 - $\mu_4^2 \chi^{\dagger} \eta$: $v_{\chi_3} \lesssim 355 \text{ GeV}$ for 4 VEVs. The 5 VEVs case has
 - f recuoin,
 - $\frac{\epsilon_{ijk}\eta_i\rho_j\chi_k}{100}$: NO massless scalars!

- This approach had not yet been considered in 3-3-1 models;
- Physical NG bosons play an important role at constraining parameters
 - Can interact with matter;
 - Example: $\gamma + e^- \rightarrow e^- + J \Longrightarrow g_{eeJ}$ coupling.
- \mathbb{Z}_2 -symmetric potential
- 4 and 5 VEVs: bad! $Z \rightarrow J_I + J_R$ allowed.
- Softly broken \mathbb{Z}_2
 - $\mu_4^2 \chi^{\dagger} \eta$: $v_{\chi_3} \lesssim 355 \text{ GeV}$ for 4 VEVs. The 5 VEVs case has
 - $\frac{\tau}{\sqrt{5}}\epsilon_{ijk}\eta_i\rho_i\chi_k$: NO massless scalars!

- This approach had not yet been considered in 3-3-1 models;
- Physical NG bosons play an important role at constraining parameters
 - Can interact with matter;
 - Example: $\gamma + e^- \rightarrow e^- + J \Longrightarrow g_{eeJ}$ coupling.
- Z₂-symmetric potential
 - 3 VEVs: bad! $v_{\chi_3} \lesssim 11.5 \text{ keV}$.
 - 4 and 5 VEVs: bad! $Z \rightarrow J_I + J_R$ allowed.
- ullet Softly broken \mathbb{Z}_2
 - $\mu_4^2 \chi^1 \eta$: $v_{\chi_3} \lesssim 355$ GeV for 4 VEVs. The 5 VEVs case has more freedom:
 - $\frac{r}{\sqrt{5}}\epsilon_{ijk}\eta_i\rho_i\chi_k$: NO massless scalars!

- This approach had not yet been considered in 3-3-1 models;
- Physical NG bosons play an important role at constraining parameters
 - Can interact with matter;
 - Example: $\gamma + e^- \rightarrow e^- + J \Longrightarrow g_{eeJ}$ coupling.
- Z₂-symmetric potential
 - 3 VEVs: bad! $v_{\chi_3} \lesssim 11.5 \text{ keV}$.
 - 4 and 5 VEVs: bad! $Z \rightarrow J_I + J_R$ allowed.
- ullet Softly broken \mathbb{Z}_2
 - $\mu_4^2 \chi^{\dagger} \eta$: $v_{\chi_3} \lesssim 355$ GeV for 4 VEVs. The 5 VEVs case has
 - more freedom;
 - $\frac{\epsilon_{ijk}\eta_i\rho_j\chi_k}{100}$: NO massless scalars!

- This approach had not yet been considered in 3-3-1 models;
- Physical NG bosons play an important role at constraining parameters
 - Can interact with matter;
 - Example: $\gamma + e^- \rightarrow e^- + J \Longrightarrow g_{eeJ}$ coupling.
- Z₂-symmetric potential
 - 3 VEVs: bad! $v_{x_3} \lesssim 11.5 \text{ keV}$.
 - 4 and 5 VEVs: bad! $Z \rightarrow J_I + J_R$ allowed.
- Softly broken \mathbb{Z}_2
 - $\mu_4^2 \chi^{\dagger} \eta$: $v_{\chi_3} \lesssim$ 355 GeV for 4 VEVs. The 5 VEVs case has
 - more freedom;
 - $\frac{1}{\sqrt{2}}\epsilon_{ijk}\eta_i\rho_j\chi_k$: NO massless scalars!

- This approach had not yet been considered in 3-3-1 models;
- Physical NG bosons play an important role at constraining parameters
 - Can interact with matter;
 - Example: $\gamma + e^- \rightarrow e^- + J \Longrightarrow g_{eeJ}$ coupling.
- Z₂-symmetric potential
 - 3 VEVs: bad! $v_{\chi_3} \lesssim 11.5 \text{ keV}$.
 - 4 and 5 VEVs: bad! $Z \rightarrow J_I + J_R$ allowed.
- Softly broken \mathbb{Z}_2
 - $\mu_4^2 \chi^\dagger \eta$: $v_{\chi_3} \lesssim$ 355 GeV for 4 VEVs. The 5 VEVs case has more freedom;
 - $\frac{f}{\sqrt{2}}\epsilon_{ijk}\eta_i\rho_j\chi_k$: NO massless scalars!

- This approach had not yet been considered in 3-3-1 models;
- Physical NG bosons play an important role at constraining parameters
 - Can interact with matter;
 - Example: $\gamma + e^- \rightarrow e^- + J \Longrightarrow g_{eeJ}$ coupling.
- Z₂-symmetric potential
 - 3 VEVs: bad! $v_{\chi_3} \lesssim 11.5 \text{ keV}$.
 - 4 and 5 VEVs: bad! $Z \rightarrow J_I + J_R$ allowed.
- Softly broken \mathbb{Z}_2
 - $\mu_4^2 \chi^\dagger \eta$: $v_{\chi_3} \lesssim$ 355 GeV for 4 VEVs. The 5 VEVs case has more freedom;
 - $\frac{f}{\sqrt{2}}\epsilon_{ijk}\eta_i\rho_j\chi_k$: NO massless scalars!

- This approach had not yet been considered in 3-3-1 models;
- Physical NG bosons play an important role at constraining parameters
 - Can interact with matter;
 - Example: $\gamma + e^- \rightarrow e^- + J \Longrightarrow g_{eeJ}$ coupling.
- Z₂-symmetric potential
 - 3 VEVs: bad! $v_{\chi_3} \lesssim 11.5 \text{ keV}$.
 - 4 and 5 VEVs: bad! $Z \rightarrow J_I + J_R$ allowed.
- Softly broken \mathbb{Z}_2
 - $\mu_4^2 \chi^{\dagger} \eta$: $v_{\chi_3} \lesssim$ 355 GeV for 4 VEVs. The 5 VEVs case has more freedom;
 - $\frac{f}{\sqrt{2}}\epsilon_{ijk}\eta_i\rho_j\chi_k$: NO massless scalars!