

Top Rediscovery in the Dimuon Channel

> Dirk Dammann

Top Physics

Event

BG

Description

Event Recon-

Summary

Preparation of top rediscovery and cross section measurement in early CMS data in the dimuon channel

Dirk Dammann

DESY

2009-02-25

Outline

Top Rediscovery in the Dimuon Channel

> Dirk Dammanr

Top Physic

Event

D.C

Description

Kinematic Event Reconstruction

- Top Physics
 - 2 Event Selection
 - 3 BG Description
- 4 Kinematic Event Reconstruction
- Summary

Top Physics

Top Rediscovery in the Dimuon Channel

> Dirk Dammanı

Top Physics

Event Selection

BG Description

Kinematic Event Recon-

Summary

Until today the top has only been observed in $O(10^3)$ events at Tevatron

- At the LHC the $t\bar{t}$ -production cross section and luminosity will be much larger
 - \rightarrow about 1 $t\bar{t}$ evt/s
- precision measurements are important for understanding QCD
- mass measurements sets limits on higgs mass
- top is background for BSM processes

Top Physics Decay Channels

Top Rediscovery in the Dimuon Channel

> Dirk Dammanı

Top Physics

Event Selection

Description

Kinematic Event Reconstruction

Summa

- top decays dominantly to b+W
- classifications of tt̄-decays via W-decays:
 - fully hadronic
 - semi-leptonic
 - di-leptonic

Top Pair Decay Channels State of the pair of the pair

dimuon channel:

- clear event signature, good to trigger
- can be separated well from background
- low branching ration (about 1,2%)

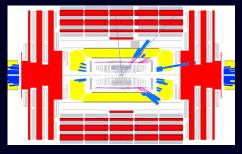
Top Physics Event Signature

Top Rediscovery in the Dimuon Channel

> Dirk Dammani

Top Physics

Selection


Selectio

Description

Kinematic Event Recon struction

Summai

- 2 muons
- 2 b-jets
- 2 neutrinos $\rightarrow \mathcal{E}_t$

Top Physics Background Processes

Top Rediscovery in the Dimuon Channel

> Dirk Dammanı

Top Physics

Event Selection

Description

Kinematic Event Reconstruction

- Z / DY $\rightarrow 2\mu$
- dileptonic $t\bar{t}$ -decays with $W \rightarrow \tau \rightarrow \mu$
- events with two heavy bosons: WW, WZ, ZZ
- further QCD-events have to be taken into account \rightarrow large cross section

Event Selection Kinematic Object Selection

Top Rediscovery in the Dimuon Channel

> Dirk Dammann

Top Physic

Event Selection

BG

Kinematic Event Recon-

Summary

• current plots with $\sqrt{s} = 14 \text{TeV}$

have to be redone with Summer08 production $(\sqrt{s}{=}10{ extsf{TeV}})$

Cuts

- \star 2 muons with $p_t>$ 20GeV and $|\eta|<$ 2.1
- 2 jets with $p_t >$ 40GeV and $|\eta| <$ 2.4
- no cut on \mathcal{E}_t

Event Selection Muon Isolation

Top Rediscovery in the Dimuon Channel

Dirk Dammann

Top Physic

Event Selection

BG Description

Kinematic Event Reconstruction

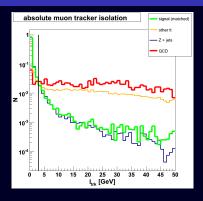
Summarv

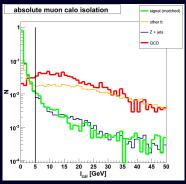
- Most muons from heavy particle decays are isolated,
 i. e. outside jets.
- Isolation can be used to get rid of QCD-background
- Isolation can be measured as well in the tracker as in the calo.
- Tracker Isolation: sum of all track's p_t in cone $\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2}$ around μ -track: $I_{track} = \sum_{\Lambda R} p_t$
- Calo Isolation: sum of E_t around μ : $I_{calo} = \sum_{AB} E_t$
- $\Delta R = 0.3$ is used for this analysis
- Tried different ways to cut on isolation

Event Selection Absolute Muon Isolation

Top Rediscovery in the Dimuon Channel

> Dirk Dammanı


Top Physic


Event Selection

BC

Description

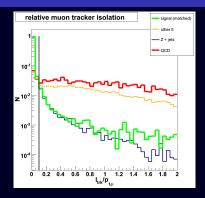
Kinematic Event Recon struction

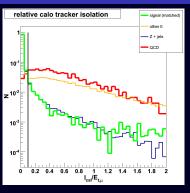
- absolute cuts, old standard in Top Analyses Framework: $I_{track} < 3 \text{GeV}$ and $I_{calo} < 5 \text{GeV}$)
- efficiency for signal muons: $87.6\pm0.6\%$
- efficiency for muons from QCD: 2.64±0.3%

Event Selection Relative Muon Isolation

Top Rediscovery in the Dimuon Channel

> Dirk Dammanı


Top Physic


Event

Selection

Description

Kinematic Event Recon struction

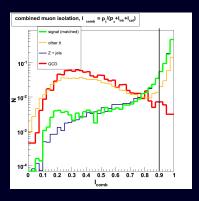
- cuts on relative isolation $I_{track}/p_{t,\mu}>0.1$ and $I_{calo}/E_{t,\mu}>0.1$
- $\epsilon_{\it sig} = 89.2 \pm 0.6\%$
- $\epsilon_{QCD} = 2.19 \pm 0.03\%$
- clearly better than absolute cuts

Event Selection Combined Muon Isolation

Top Rediscovery in the Dimuon Channel

> Dirk Dammani

Top Physic


Event Selection

Selection

Description

Event Recon-

Summarv

• combined variable:
$$I_{comb} = \frac{p_{t,\mu}}{p_{t,\mu} + I_{track} + I_{calo}}$$

•
$$\epsilon_{\it sig} = 88.5 \pm 0.6\%$$

•
$$\epsilon_{QCD} = 2.01 \pm 0.03\%$$

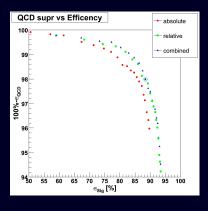
as good as two separated relative cuts

Event Selection Muon Isolation

Top Rediscovery in the Dimuon Channel

> Dirk Dammann

Top Physic


Event Selection

BG Description

Kinematic Event Recon-

Summary

QCD-suppression vs signal efficiency curves for diverse cut values:

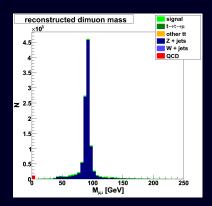
Results

- left plot shows that relative and combined isolation cuts have similar performance
- for my analysis cut on combined variable is used
- $I_{comb} > 0.9$

Event Selection Z-mass Veto

Top Rediscovery in the Dimuon Channel

> Dirk Dammann


Top Physic

Event Selection

BG

Kinematic Event Recon-

- after isolation cuts Z is main background
- can be removed easy by rejecting events with $80 {\rm GeV} < M_{\mu\mu} < 100 {\rm GeV}$

BG Description Wrong Charge Method

Top Rediscovery in the Dimuon Channel

> Dirk Dammanr

Top Physic

Event Selection

BG Description

Kinematic Event Recon-

- Only two QCD-events pass selection cuts.
- But this events have an event weight of about 100!
- Background can be described with wrong charge method (data driven):
 - Signal events and main BGs like Z+jets, WW, ... produce oppositely charged muons
 - → Also select events with two equally charged muons
 - From each plotted distribution with oppositely charged muons the same distribution for events with equally charged muons is subtracted
 - In most cases a normalization is required.

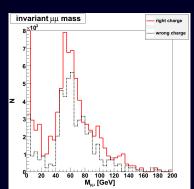
Event Selection QCD Background Description

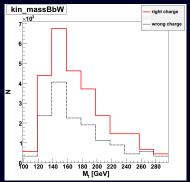
Top Rediscovery in the Dimuon Channel

Dirk Dammann

Top Physics

Event


BG Description


Kinematic Event Recon-

Summary

Example:

- For $M_{\mu\mu} > 10 \text{GeV}$ the shapes of the invariant $\mu\mu$ -mass look alike for right and wrong charge muon pairs.
- For lower plots the isolation cuts have been loosened to have enough statistics.

System of kinematic equations

Top Rediscovery in the Dimuon Channel

> Dirk Dammann

Top Physics

Event

Selection

Description

Kinematic Event Reconstruction

- missing information due to to unobserved neutrinos
- instead x- and y- component of their energy is measured as \mathcal{E}_t
- using W-mass eliminates two further unknown variables

System of kinematic equations

Top Rediscovery in the Dimuon Channel

> Dirk Dammanr

Top Physic

Event Selection

BG Descriptio

Kinematic Event Reconstruction

Summary

- missing information due to to unobserved neutrinos
- instead x- and y- component of their energy is measured as \mathcal{E}_t
- using W-mass eliminates two further unknown variables

2 linear and 6 nonlinear equations:

$$\begin{split} \mathcal{E}_{t,x} &= p_{\nu,x} + p_{\bar{\nu},x} \\ \mathcal{E}_{t,y} &= p_{\nu,y} + p_{\bar{\nu},x} \\ \mathcal{E}_{t,y} &= p_{\nu,y} + p_{\bar{\nu},y} \\ \end{split}$$

$$E_{t,y}^2 &= p_{\nu,y}^2 + p_{\bar{\nu},y}^2 + p_{\bar{\nu},z}^2 \\ E_{\bar{\nu}}^2 &= p_{\bar{\nu},x}^2 + p_{\bar{\nu},y}^2 + p_{\bar{\nu},z}^2 \\ \end{split}$$

$$m_{W^+} &= (E_{l^+} + E_{\nu})^2 - (p_{l^+,x} + p_{\nu,x})^2 - (p_{l^+,y} + p_{\nu,y})^2 - (p_{l^+,z} + p_{\nu,z})^2 \\ m_{W^-} &= (E_{l^-} + E_{\bar{\nu}})^2 - (p_{l^-,x} + p_{\bar{\nu},x})^2 - (p_{l^-,y} + p_{\bar{\nu},y})^2 - (p_{l^-,z} + p_{\bar{\nu},z})^2 \\ \end{split}$$

$$m_t &= (E_{l^+} + E_{\nu} + E_b)^2 - (p_{l^+,x} + p_{\nu,x} + p_{b,x})^2 - (p_{l^+,y} + p_{\nu,y} + p_{b,y})^2 - (p_{l^+,z} + p_{\nu,z} + p_{b,z})^2 \\ m_{\bar{t}} &= (E_{l^-} + E_{\bar{\nu}} + E_{\bar{b}})^2 - (p_{l^-,x} + p_{\bar{\nu},x} + p_{\bar{b},x})^2 - (p_{l^-,y} + p_{\bar{\nu},y} + p_{\bar{b},y})^2 - (p_{l^-,z} + p_{\bar{\nu},z} + p_{\bar{b},z})^2 \\ &= (E_{l^-} + E_{\bar{\nu}} + E_{\bar{b}})^2 - (p_{l^-,x} + p_{\bar{\nu},x} + p_{\bar{b},x})^2 - (p_{l^-,y} + p_{\bar{\nu},y} + p_{\bar{b},y})^2 - (p_{l^-,z} + p_{\bar{\nu},z} + p_{\bar{b},z})^2 \\ \end{cases}$$

Solution of kinematic equations (1)

Top Rediscovery in the Dimuon Channel

> Dirk Dammanr

Top Physic

Event Selection

BG Description

Kinematic Event Reconstruction

- system of equations can be transformed into a single equation (with simplifying assumptions)
- 4th order polynomial in one neutrino momentum component, e. g. $p_{\nu,x}$
- coefficients h_i are functions of m_t and $m_{\bar{t}}$

$$p_{\nu,x}^4 + h_3 p_{\nu,x}^3 + h_2 p_{\nu,x}^2 + h_1 p_{\nu,x} + h_0 = 0$$

- equation can be solved analytically for constant h_i
- fourfold ambiguity

Solution of kinematic equations (2)

Top Rediscovery in the Dimuon Channel

> Dirk Dammann

Top Physic

Event Selection

BG Description

Kinematic Event Reconstruction

Summary

2 methods:

- assume $m_t=m_{\overline{t}}$ and vary top mass parameter in 1GeV-steps between 100GeV and 300GeV
- ² take measured top mass from Tevatron for m_t and $m_{\bar{t}}$ and look if there are solutions for that mass

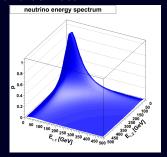
Solution of kinematic equations (2)

Top Rediscovery in the Dimuon Channel

Dirk Dammann

Top Physic

Event Selection


Descriptio

Kinematic Event Reconstruction

Summary

2 methods:

- assume $m_t=m_{\overline{t}}$ and vary top mass parameter in 1GeV-steps between 100GeV and 300GeV
- 2 take measured top mass from Tevatron for m_t and $m_{\overline{t}}$ and look if there are solutions for that mass
- In both cases calculated E_{ν} and $E_{\bar{\nu}}$ are compared to normalized model spectrum from MC
- Probability value from spectrum is taken as weight for each solution

Use and Implementation

Top Rediscovery in the Dimuon Channel

> Dirk Dammanr

Top Physic

Event Selection

BG Description

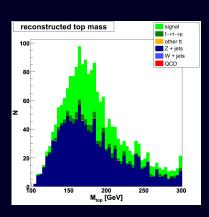
Kinematic Event Reconstruction

- first method gives a approximation of the top mass distribution
- this method was already implemented in TQAF as TtDilepEventSolution
- second method with fixed mass can be used to reduce BG by kinematic constraints
- valuable for spin correlation studies (Benedikt Hegner used it)
- not yet implemented
- during the next weeks different event building algorithms for dileptonic $t\bar{t}$ -events are to be implemented in analogy to the semileptonic $t\bar{t}$ -event hypotheses implemented by Sebastian

Summary Conclusion

Top Rediscovery in the Dimuon Channel

> Dirk Dammanı


Top Physic

Event

BG Description

Kinematic Event Recon-

- good S/BG-ratio with simple cuts
- different methods to solve the kinematic equations will go into next TQAF release

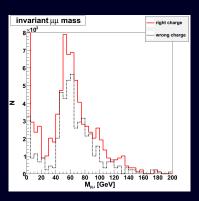
Summary Outlook

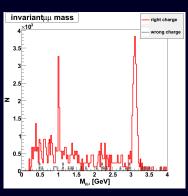
Top Rediscovery in the Dimuon Channel

- test how solving the kinematic equations can help to further reduce BG
- redo all plots with $\sqrt{s} = 10$ TeV-samples
- b-tagging an cut on \mathcal{E}_t have not been applied
 - →have to wait for real data

Backup Slides Addition To Wrong Charge

Top Rediscovery in the Dimuon Channel


> Dirk Dammanr


Top Physic

Event

BG Description

Kinematic Event Recon-

