

Search for Higgs bosons produced in association with top quark pairs in the CMS detector

Gerrit Van Onsem (DESY)

LHC discussions DESY Hamburg, Germany February 13th, 2017

Probing the ttH coupling at the LHC

> Top-Higgs Yukawa coupling y_t probed at LHC

- H production via gluon fusion indirect measurement of y_t potential new particles in loop
- H production in association with top quarks (ttH) direct measurement of y_t
- > Experimental challenges of search for ttH
 - ttH cross section very small (~510 fb at 13 TeV) large backgrounds such as tt+jets, ttZ/ttW, ...
 - H signature diluted by additional jets or leptons from t decays
- > CMS analyzed 12.9 / fb of 13 TeV data in 2016, SM sensitivity of ttH production getting into reach

mmm

Signatures searched for in CMS

> Rich experimental program, final states depend on t→bW and H decay products

> tt+(H → bb) CMS-PAS-HIG-16-038

- single lepton
- opposite-sign dileptons
 DESY

large H branching ratio, large tt background

> tt+(H → WW*, ZZ*, ττ) CMS-PAS-HIG-16-022

- same-sign dileptons
- trileptons

small H branching ratio, relatively pure, difficult fake lepton background

> tt+(H → γγ) CMS-PAS-HIG-16-020

inclusive tt decays

very small H branching ratio, pure, difficult fake photon background

3

tt + (H → bb)

selection and (jet,b-jet) event categorization background vs signal separation (BDT, MEM) signal extraction and results

tt + (H \rightarrow WW^{*}, ZZ^{*}, $\tau\tau$)

selection and non-prompt lepton rejection background vs signal separation (BDT, MEM) signal extraction and results

tt + (Η → γγ)

selection background estimation signal extraction and results

Summary and outlook

tt + (H → bb)

selection and (jet,b-jet) event categorization background vs signal separation (BDT, MEM) signal extraction and results

tt + (H \rightarrow WW^{*}, ZZ^{*}, $\tau\tau$)

selection and non-prompt lepton rejection background vs signal separation (BDT, MEM) signal extraction and results

tt + (H → yy)

selection background estimation signal extraction and results

Summary and outlook

Strategy and selection

Single lepton channel

 \geq 4 anti-k_T (R=0.4) jets with p_T > 30 GeV, $|\eta| < 2.4$

1 isolated electron $p_T > 30 \text{ GeV}$ or muon $p_T > 25 \text{ GeV}$, $|\eta| < 2.1$

> Strategy

- Select events compatible with tt → ℓ+jets or tt → ℓℓ and H → bb decay
- Categorize by jets, b-tagged jets
- Separate signal from background using multivariate algorithms
- Signal extraction via fit to data

Dilepton channel

 \geq 2 anti-k_T (R=0.4) jets with p_T > 30 GeV, $|\eta| < 2.4$

2 oppositely-sign electrons or muons, $p_{T}^{\text{lead}} > 25 \text{ GeV}, p_{T}^{\text{sublead}} > 15 \text{ GeV}$ $|\eta| < 2.4$

> Corrections applied in simulation and/or data (trigger, lepton, jet energy scale and resolutions, b-tagging efficiency, pileup)

Event categorization based on jet and b jets ніс-16-038

- >Background simulation using POWHEG (ttH signal, tt+jets, single top), MG5_aMC@NLO (V+jets, ttV), or PYTHIA (VV)
- > tt+jets sample separated in additional jet flavor components, based on matching of reconstructed jet with generated hadrons: tt+bb, tt+b, tt+2b, tt+cc, tt+lf (tt+bb irreducible and theoretically challenging)

BDT input variable examples

> In each (jet,b-jet) category, information from kinematic, event shape and b-tagging variables are combined using Boosted Decision Trees (BDT)

BDT output discriminant examples

> Analytical signal and background probabilities constructed using full kinematic information of event

- LO matrix elements from signal tt+($H \rightarrow bb$), background tt+bb
- Four jets most likely originating from b-quarks considered as b-quark candidates in hypotheses
- Detector transfer functions map reconstructed four-vectors of final state particles to generated ones
- Numerical integration over phase space

> Final **MEM variable**: likelihood ratio of weights under different hypotheses

$$P_{s/b} = \frac{w(\vec{y}|t\bar{t}H)}{w(\vec{y}|t\bar{t}H) + k_{s/b}w(\vec{y}|t\bar{t}+b\bar{b})}$$

> Uncertainties affecting **shape** (and rate) of BDT and MEM distributions

- B-tag scale factor uncertainties
- Jet energy scale and resolution
- Lepton ID/isolation, trigger efficiency, pileup
- Q² renormalization and factorization scale
- Bin-by-bin statistical uncertainty on prediction (limited sample size)
- > Uncertainties affecting rate
 - Normalization of (sub)processes (e.g. 50% additional uncertainty for each tt+heavy flavor component)
 - PDF for different production modes (gg, qq, qg)
 - Parton shower renormalization and factorization scale of tt (1-9% depending on jet flavor component)
 - Luminosity 6.2%

> Systematic uncertainties treated as **nuisance parameters** in fit

Signal extraction using fit

Signal extraction using fit

Limits and fit results

> Simultaneous binned likelihood fit in both channels

• Combined observed ttH cross section upper limit = 1.5 σ_{SM}

• Combined **best-fit ttH signal strength** $\sigma/\sigma_{SM} = -0.19^{+0.80}_{-0.81}$

tt + (H → bb)

selection and (jet,b-jet) event categorization background vs signal separation (BDT, MEM) signal extraction and results

tt + (H \rightarrow WW^{*}, ZZ^{*}, $\tau\tau$)

selection and non-prompt lepton rejection background vs signal separation (BDT, MEM) signal extraction and results

tt + (H → yy)

selection background estimation signal extraction and results

Summary and outlook

Strategy and selection

> Strategy

- Select events with multilepton final states from Higgs decays to WW^{*}, ZZ^{*}, ττ
- Dedicated algorithm to identify prompt leptons
- Separate signal from background using multivariate algorithms
- Signal extraction via fit to data

Same-sign dilepton channel

 \geq 4 anti-k_T (R=0.4) jets with p_T > 25 GeV, $|\eta| < 2.4$

\geq 2 loose or 1 medium b-tag

2 oppositely-sign electrons/muons $p^{lead}_{T} > 25 \text{ GeV}, p^{sublead}_{T} > 15/10 \text{ GeV}$

Z mass window veto 0.6 E^{miss}_{T} + 0.4 H^{miss}_{T} > 30 GeV

Three lepton channel

 \geq 2 anti-k_T (R=0.4) jets with p_T > 25 GeV, |η| < 2.4

 \geq 2 loose or 1 medium b-tag

 \geq 3 electrons or muons p_T > 10 GeV (p^{lead}_T > 25 GeV)

Z mass window veto [+ cut on 0.6 E_{τ}^{miss} + 0.4 H_{τ}^{miss}]

Rejecting non-prompt leptons

> Non-prompt leptons from b jets in tt, or mis-identified light jets

> Dedicated multivariate discriminant developed, based on isolation, vertex and identification observables

> Data-driven estimate of residual non-prompt lepton background using tight-to-loose method

Multivariate analysis

18

Signal extraction using fit

- **Two-dimensional fit** to BDT(ttH,tt) and BDT(ttH,ttV) discriminants
- > Systematic uncertainties (lepton, trigger, b-tagging scale factors, nonprompt lepton prediction 30-50%, jet energy corrections, PDF, Q² scale, cross sections) treated as nuisance parameters

> Further event categorization based on lepton flavor, presence of b-tagged jets, hadronically decaying τ leptons

Three lepton channel

5.5

5

Limits and fit results

> Simultaneous binned likelihood fit in all categories

and combined with 2015 analysis (CMS-PAS-HIG-15-008)

Category	Obs. limit	Exp. limit $\pm 1\sigma$	Best fit $\mu \pm 1\sigma$
Same-sign dileptons	4.6	$1.7^{+0.9}_{-0.5}$	$2.7^{+1.1}_{-1.0}$
Trileptons	3.7	$2.3^{+1.2}_{-0.7}$	$1.3^{+1.2}_{-1.0}$
Combined categories	3.9	$1.4^{+0.7}_{-0.4}$	$2.3^{+0.9}_{-0.8}$
Combined with 2015 data	3.4	$1.3^{+0.6}_{-0.4}$	$2.0^{+0.8}{}_{-0.7}$

20

tt + (H → bb)

selection and (jet,b-jet) event categorization background vs signal separation (BDT, MEM) signal extraction and results

tt + (H \rightarrow WW^{*}, ZZ^{*}, $\tau\tau$)

selection and non-prompt lepton rejection background vs signal separation (BDT, MEM) signal extraction and results

tt + (H → yy)

selection background estimation signal extraction and results

Summary and outlook

Strategy and selection

ttH leptonic tag

 \geq 2 anti-k_T (R=0.4) jets with p_T > 25 GeV, $|\eta| < 2.4$

 \geq 1 medium b-tag

 \geq 1 isolated electron/muon p_T > 20 GeV, $|\eta| <$ 2.4, not Z peak

2 photons $p_{T}^{lead} > m_{vv}$ / 2, $p_{T}^{sublead} > m_{vv}$ / 4

> Strategy

- Select events compatible with inclusive tt decays and H $\rightarrow \gamma\gamma$ decay
- Search for narrow diphoton peak on falling background in mass distribution
- Signal extraction via fit to data

ttH hadronic tag

 \geq 5 anti-k_T (R=0.4) jets with p_T > 25 GeV, $|\eta| < 2.4$

 \geq 1 medium b-tag

no leptons

2 photons $p_{T}^{lead} > m_{\gamma\gamma} / 2$, $p_{T}^{sublead} > m_{\gamma\gamma} / 4$

Diphoton mass spectrum

- > Background consists of reducible fake photon backgrounds, and irreducible prompt diphoton backgrounds; data-driven
- > **Diphoton mass** m_{vv} observable used to extract signal
- > Signal shape parametrized as sum of gaussian functions

ttH leptonic tag

Events / GeV

tian functions

ttH hadronic tag

23

Fit results

> Systematic uncertainties (Parton shower, Q² scale, jet energy scale, photon energy resolution, gluon fusion contamination in ttH category, ...)

Best-fit ttH signal strength $\sigma/\sigma_{SM} = 1.91^{+1.5}_{-1.2}$

tt + (H → bb)

selection and (jet,b-jet) event categorization background vs signal separation (BDT, MEM) signal extraction and results

tt + (H \rightarrow WW^{*}, ZZ^{*}, $\tau\tau$)

selection and non-prompt lepton rejection background vs signal separation (BDT, MEM) signal extraction and results

tt + (H → yy)

selection background estimation signal extraction and results

Summary and outlook

Summary and outlook

> The CMS experiment analyzed 12.9 / fb of data in 2016 searching for ttH

• $tt+(H \rightarrow bb)$ single and opposite-sign dilepton final state

Best fit μ_{ttH} = -0.19^{+0.80}

- tt+(H → WW^{*}, ZZ^{*}, ττ) same-sign dilepton and trilepton final states Best fit $\mu_{ttH} = 2.0^{+0.8}_{-0.7}$ combined with 2015 data
- $tt+(H \rightarrow yy)$ diphoton final states

Best fit μ_{ttH} = 1.91^{+1.5}

> About 3 times more data being analyzed, results at Moriond 2017 conference and beyond

SM sensitivity getting in reach, exciting ttH times ahead!

BACKUP

tt + (H → bb)

tt + (H \rightarrow WW^{*}, ZZ^{*}, $\tau\tau$)

tt + (H → yy)

Process	\geq 6 jets, 3 b-tags	4 jets, 4 b-tags	5 jets, \geq 4 b-tags	\geq 6 jets, \geq 4 b-tags
t ī +LF	2710.6 ± 1027.1	91.4 ± 69.9	96.9 ± 75.8	86.2 ± 71.9
tī+cī	1771.9 ± 1099.0	59.3 ± 47.0	112.5 ± 88.9	175.8 ± 141.6
tī+b	717.6 ± 406.8	37.6 ± 23.1	69.6 ± 42.4	86.3 ± 57.0
tī+2b	401.4 ± 237.1	16.0 ± 9.9	33.8 ± 20.6	54.9 ± 37.3
tī+bb	777.0 ± 468.4	42.2 ± 23.8	126.5 ± 71.6	306.3 ± 183.2
Single t	331.9 ± 77.2	19.2 ± 7.8	29.5 ± 11.4	30.0 ± 10.8
V+jets	79.5 ± 30.9	5.7 ± 6.8	7.7 ± 5.1	7.2 ± 3.9
t t +V	81.4 ± 17.0	2.2 ± 0.6	6.3 ± 1.7	18.1 ± 5.2
Diboson	4.3 ± 2.3	0.5 ± 0.5		
Total bkg.	6875.6 ± 2776.8	274.1 ± 153.0	482.9 ± 239.7	764.8 ± 365.3
tīH	74.2 ± 9.7	4.0 ± 0.8	11.7 ± 2.2	26.9 ± 5.6
Data	6811	376	551	787

Process	3 jets, 3 b-tags	\geq 4 jets, 3 b-tags	\geq 4 jets, \geq 4 b-tags
t ī +LF	179.0 ± 68.7	390.1 ± 167.9	7.6 ± 3.6
tī+cc	117.5 ± 73.8	382.6 ± 237.7	19.4 ± 15.5
tī+b	94.2 ± 51.9	228.0 ± 127.7	14.4 ± 9.2
tī+2b	31.7 ± 17.3	99.1 ± 54.3	6.2 ± 3.8
tī+bb	17.1 ± 9.4	172.5 ± 92.9	57.9 ± 32.6
Single t	16.0 ± 4.6	38.4 ± 11.9	2.4 ± 1.2
V+jets	1.6 ± 2.2	1.6 ± 4.1	0.7 ± 0.5
tī+V	1.4 ± 0.5	16.6 ± 3.4	2.6 ± 0.8
Diboson		0.4 ± 0.4	
Total bkg.	458.3 ± 197.0	1329.3 ± 503.1	111.2 ± 49.8
tīH	1.8 ± 0.4	16.5 ± 3.4	4.4 ± 1.3
Data	498	1469	146

Single lepton control plots

Dilepton control plots

10⁸

CMS Preliminary

11.4-12.9 fb⁻¹ (13 TeV)

- tīH x923

Data

Systematic uncertainties

Source	Туре	Remarks
Luminosity	rate	Signal and all backgrounds
Lepton ID/Iso	shape	Signal and all backgrounds
Trigger efficiency	shape	Signal and all backgrounds
Pileup	shape	Signal and all backgrounds
Jet energy scale	shape	Signal and all backgrounds
Jet energy resolution	shape	Signal and all backgrounds
b-tag HF fraction	shape	Signal and all backgrounds
b-tag HF stats (linear)	shape	Signal and all backgrounds
b-tag HF stats (quadratic)	shape	Signal and all backgrounds
b-tag LF fraction	shape	Signal and all backgrounds
b-tag LF stats (linear)	shape	Signal and all backgrounds
b-tag LF stats (quadratic)	shape	Signal and all backgrounds
b-tag charm (linear)	shape	Signal and all backgrounds
b-tag charm (quadratic)	shape	Signal and all backgrounds
QCD scale (ttH)	rate	Scale uncertainty of NLO ttH prediction
QCD scale $(t\bar{t})$	rate	Scale uncertainty of NLO tt prediction
QCD scale (t ī +HF)	rate	Additional 50% rate uncertainty of tt+HF predic-
		tions
QCD scale (t)	rate	Scale uncertainty of NLO single t prediction
QCD scale (V)	rate	Scale uncertainty of NNLO W and Z prediction
QCD scale (VV)	rate	Scale uncertainty of NLO diboson prediction
pdf (gg)	rate	PDF uncertainty for gg initiated processes except ttH
pdf (gg tīH)	rate	PDF uncertainty for ttH
pdf (qq)	rate	PDF uncertainty of qq initiated processes (tt W, W,
		Z)
pdf (qg)	rate	PDF uncertainty of qg initiated processes (single t)
Q^2 scale (t \overline{t})	shape	Renormalization and factorization scale uncertain-
		ties of the tt ME generator, independent for addi-
		tional jet flavors
PS Scale ($t\bar{t}$)	rate	Renormalization and factorization scale uncertain-
		ties of the parton shower (for tt events), indepen-
		dent for additional jet flavors
Bin-by-bin statistics	shape	statistical uncertainty of the signal and background
		prediction due to the limited sample size

Systematic uncertainties yield effect

Effect in ≥6 jet, 3 b-tags single lepton channel

Process	tī rate up/down [%]	ttH rate up/down [%]
Jet energy scale	+12.6/-11.8	+8.4/-8.0
Jet energy resolution	+0.2 / -0.3	-0.0/-0.1
Pile-up	+0.1/-0.1	-0.2/+0.1
Electron efficiency	+0.5 / -0.5	+0.5/-0.5
Muon efficiency	+0.4/-0.4	+0.4/-0.4
Electron trigger efficiency	+1.2/-1.2	+1.3 / -1.3
Muon trigger efficiency	+0.8 / -0.8	+0.9/-0.9
b-Tag HF contamination	-9.4/+9.8	-2.6/+2.8
b-Tag HF stats (linear)	-3.1/+3.3	-2.5/+2.7
b-Tag HF stats (quadratic)	+2.6/-2.4	+2.4/-2.2
b-Tag LF contamination	+7.1/-5.2	+5.8 / -4.5
b-Tag LF stats (linear)	-2.0/+4.4	+0.5/+1.5
b-Tag LF stats (quadratic)	+2.1/+0.2	+1.5/+0.5
b-Tag charm Uncertainty (linear)	-11.1/+14.9	-3.1/+4.1
b-Tag charm Uncertainty (quadratic)	+0.5/-0.5	-0.0/+0.0
Q^2 scale (tt+LF)	-6.2/+7.5	_
Q^2 scale (tt+b)	-1.7/+2.0	—
Q^2 scale (tt+2b)	-1.1/+1.4	—
Q^2 scale (tt+bb)	-2.0/+2.5	—
Q^2 scale (t \bar{t} +c \bar{c})	-4.3/+5.4	—
PS scale (tī+LF)	+4.8/-9.0	—
PS scale (tī+b)	-0.9 / +0.7	—
PS scale (tī+2b)	-0.8 / +0.9	—
PS scale (tī+bb)	-1.5/+2.7	—
PS scale (tī̄+cī)	-3.9/+3.0	—

BDT input variable list

Single lepton channel

Event variable	Description
Object and event kinematics	
$\langle \Delta R_{ m tag,tag} angle$	Average ΔR between b-tagged jets
$\sum p_{T ext{jets,leptons}}$	Sum of the p_T of all jets and leptons
$ au_{ m jet, jet}^{ m max\ mass}$	Twist angle between jet pair
min $\Delta R_{ m tag,tag}$	ΔR between the two closest b-tagged jets
$\max \Delta \eta_{ ext{tag,tag}}$	$\Delta\eta$ between the two furthest b-tagged jets
$M_{ m jet, jet}^{ m min\Delta R}$	Invariant mass of jet pair with minimum ΔR
$M^{ m jj}_{ m higgs-like}$	Invariant mass of a jet pair ordered in closeness to the Higgs mass
$M_{ m tag,tag}^{ m min\Delta R}$	Mass of b-tagged jet pair with minimum ΔR
$p_T^{\min\Delta R}_{ ext{tag,tag}}$	Sum of the p_T of b-tagged jet pair with minimum ΔR
Centrality (tags)	Ratio of the sum of the transverse momentum of all b- tagged jets and the sum of the energy of all b-tagged jets
Centrality (jets, leptons)	Ratio of the sum of the transverse momentum of all jets and leptons, and the sum of the energy of all jets and leptons
H_T	Scalar sum of transverse momentum for all jets
min $\Delta R_{ m jet, jet}$	ΔR between the two closest jets
median $M_{ m jet, jet}$	Median invariant mass of all combinations of jet pairs
$M_{ m tag,tag}^{ m max\ mass}$	Mass for b-tagged jet pair with maximum invariant mass combination
$\langle \Delta R_{jet,tag} angle$	Average ΔR between jets (with at least one b-tagged jet)
$P_{T jet,tag}^{\min\Delta R}$	Sum of the p_T of jet pair with minimum ΔR (with at least one b-tagged jet)
$ au_{ m jet,tag}^{ m max\ mass}$	Twist angle between jet pair (with at least one b-tagged jet)
max p _T jet,jet,jet	Invariant mass of the 3-jet system with the largest transverse momentum.
$M_{ m higgs-like}^{ m bj}$	Invariant mass of a jet pair (with at least one b-tagged jet) ordered in closeness to the Higgs mass
CSVv2 b-tag	
$\langle d angle_{ ext{tagged}/ ext{untagged}}$	Average CSVv2 b-tag discriminant value for b-tagged/un- b-tagged jets
Event shape	
H_0, H_1, H_2, H_3, H_4	Fox-Wolfram moments [?]
C(jets)	$3 \left(\lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \lambda_2 \lambda_3\right) [?]$

BDT input variable list

Dilepton channel

3 jets, 3 tags	\geq 4 jets, 3 tags	\geq 4 jets, \geq 4 tags
$\langle d angle_{ m tagged}$	Centrality(jets & leptons)	Centrality(jets & leptons)
$H_1(jets)$	C(jets)	Centrality(tags)
$M_{ m higgs-like}^{ m bj}$	$H_2(tags)$	H_T^{tags}
$M_{ m tag,tag}^{ m max\ mass}$	$M_{ m higgs-like}^{ m jj}$	$M_{ m higgs-like}^{ m jj}$
min $\Delta R_{\mathrm{tag,tag}}$	$M_{ m jet, jet, jet}^{ m max p_T}$	min $\Delta R_{ m jet, jet}$
$\max \Delta \eta_{ ext{jet,jet}}$	$M_{ ext{tag,tag}}^{\min\Delta R}$	$M_{jet,tag}^{{ m min}\Delta R}$
min $\Delta R_{ m jet, jet}$	min $\Delta R_{ ext{tag,tag}}$	$M_{ m tag,tag}^{ m max\ mass}$
$\sum p_{T ext{jets,leptons}}$	$\max \Delta \eta_{ ext{tag,tag}}$	$M_{ t tag, tag}^{\min \Delta R}$
$H_4/H_0(tags)$	$ au_{ ext{tag,tag}}^{ ext{max mass}}$	$\max \Delta \eta_{ ext{jet,jet}}$
		$\max \Delta \eta_{ ext{tag,tag}}$
		median $M_{\text{jet,jet}}$

Matrix element method weights

ttH(bb) HIG-16-038

Weight w for hypothesis H

Details of method in arXiv:1502.02485

Four jets assigned to two b quarks in matrix element, selected using likelihood ratio between hypotheses that 4 or 2 jets arose from b quarks, based on b-tagging discriminant probability densities

> All permutations considered of 4 b-jets, and of 4 W decay products

MEM discriminants in single lepton channel

ttH(bb) HIG-16-038

Pre-fit

MEM discriminant

MEM discriminants in single lepton channel

ttH(bb) HIG-16-038

ttH(u=-0.19

ttH(µ=-0.19)

tt+cc

tī+2b

single-t

tT+CC

tī+2b

single-t

Post-fit

ttH(bb) HIG-16-038 **BDT & MEM discriminants in dilepton channel**

Pre-fit

BDT discriminant

11.4 - 12.9 fb⁻¹ (13 TeV)

tt+LF

tī+b

tt+bb

tt+V

- 15 × tīt

tt+cc

tī+2b

single-t

V+jets

BDT & MEM discriminants in dilepton channel HIG-16-038

Post-fit

Event yields pre-fit

Event yields post-fit

Limits in (jet,b-jet) categories

Single lepton categories

Dilepton categories

tt + (H \rightarrow WW^{*}, ZZ^{*}, $\tau\tau$)

tt + (H → yy)

Example diagrams

ttH(multilep) HIG-16-022

	μμ	ee	еµ	3ℓ
tīW	18.3 ± 0.9	6.8 ± 0.6	24.5 ± 1.1	12.2 ± 0.7
$t\bar{t}Z/\gamma^*$	5.8 ± 0.6	7.4 ± 0.6	15.3 ± 1.3	22.6 ± 1.0
Di-boson	1.4 ± 0.2	1.1 ± 0.2	2.6 ± 0.3	5.7 ± 0.4
tttt	0.8 ± 0.2	0.4 ± 0.1	1.5 ± 0.2	1.2 ± 0.1
tqZ	0.2 ± 0.3	0.4 ± 0.4	0.6 ± 0.6	2.7 ± 0.8
Rare SM bkg.	1.6 ± 0.3	0.5 ± 0.1	1.8 ± 0.1	0.3 ± 0.1
Charge mis-meas.		6.7 ± 0.1	10.0 ± 0.1	
Non-prompt leptons	33.4 ± 1.2	23.1 ± 1.1	61.9 ± 1.7	51.0 ± 1.8
All backgrounds	61.5 ± 1.7	46.4 ± 1.5	118.0 ± 2.5	95.7 ± 2.3
$t\bar{t}H (H \rightarrow WW^*)$	6.3 ± 0.2	2.6 ± 0.1	8.5 ± 0.2	8.0 ± 0.2
tītH (H $ ightarrow au au$)	1.6 ± 0.1	0.7 ± 0.1	2.5 ± 0.1	2.1 ± 0.1
$t\bar{t}H (H \rightarrow ZZ^*)$	0.2 ± 0.0	0.1 ± 0.0	0.3 ± 0.0	0.5 ± 0.0
Data	74	45	154	105

ttH(multilep) HIG-16-022

Same-sign dilepton channel BDT

Training against tt

Training against ttV

Same-sign trilepton channel control plots

ttH(multilep) HIG-16-022

Matrix element method weights

ttH(multilep) HIG-16-022

Weight $w_{i,a}$ for hypothesis **a** and event i

- > Two jets with highest b-tagging discriminant assigned to two b quarks in matrix element
- > Among remaining jets, pair with dijet mass closest to m_w selected

> Final weight = average of weights for each lepton, jet permutation 51

Same-sign dilepton channel BDT

Training against ttV

Trilepton channel MEM weights in BDT

MEM weight for ttH

MEM weight for ttW

MEM weight for ttZ

Most important systematic uncertainties

ttH(multilep)

ttH(multilep) HIG-16-022

Best-fit signal strengths: 2016 data

Best-fit signal strengths: 2015 + 2016 data

ttH(multilep)

tt + (H → bb)

tt + (H \rightarrow WW^{*}, ZZ^{*}, $\tau\tau$)

tt + (H → yy)

Photon preselection requirements

	H/E	$\sigma_{\eta\eta}$	R_9	photon iso.	tracker iso.
ECAL barrel; $R_9 > 0.85$	< 0.08	_	>0.5	_	—
ECAL barrel; $R_9 \leq 0.85$	< 0.08	< 0.015	>0.5	< 4.0	< 6.0
ECAL endcaps; $R_9 > 0.90$	< 0.08	_	>0.8	_	_
ECAL endcaps; $R_9 \leq 0.90$	< 0.08	< 0.035	>0.8	< 4.0	< 6.0

Expected signal event yields

Event Categories SM 125GeV Higgs boson expected signal				gnal			Bkg		
Event Categories	Total	ggh	vbf	wh	zh	tth	σ_{eff}	σ_{HM}	(GeV^{-1})
Untagged Tag 0	11.92	79.10 %	7.60 %	7.11 %	3.59 %	2.60 %	1.18	1.03	4.98
Untagged Tag 1	128.78	85.98 %	7.38 %	3.70 %	2.12 %	0.82 %	1.35	1.20	199.14
Untagged Tag 2	220.12	91.11 %	5.01 %	2.18 %	1.23 %	0.47 %	1.70	1.47	670.44
Untagged Tag 3	258.50	92.35 %	4.23 %	1.89 %	1.06 %	0.47 %	2.44	2.17	1861.23
VBF Tag 0	9.35	29.47 %	69.97 %	0.29 %	0.07 %	0.20 %	1.60	1.33	3.09
VBF Tag 1	15.55	44.91 %	53.50 %	0.86 %	0.38 %	0.35 %	1.71	1.40	22.22
TTH Hadronic Tag	2.42	16.78 %	1.28 %	2.52 %	2.39 %	77.02 %	1.39	1.21	1.12
TTH Leptonic Tag	1.12	1.09 %	0.08 %	2.43 %	1.06 %	95.34 %	1.61	1.35	0.42
Total	647.77	87.93 %	7.29 %	2.40 %	1.35 %	1.03 %	1.88	1.52	2762.65

ttH(yy)

ttH leptonic tag

ttH hadronic tag