ATLAS measurements on ttH

Run 2 results, 13 TeV 13.2 fb⁻¹

Paul Glaysher (DESY)

13 Feb 2016 DESY LHC discussion on ttH

Motivation

Some open questions after the discovery of the Higgs boson:

- Does it obey the Standard Model?
- > How does it couple to fermions?

ttH measurement:

Direct probe of Higgs-top Yukawa coupling y_{top}

- Cross section proportional to y_{top}²
- Strongest Higgs to fermion coupling (SM y_{top}≈1)
- > A deviation could indicate new physics
 - y_{top} linked to scale of new physics (arXiv:1411.1923)

Search for ttH process

Search for ttH process

- Search split into three analyses & combination
- Here I show the 13 TeV, 13.2 fb⁻¹ results first shown at ICHEP2016

> Bulk of Run 2 still to come!

Higgs decay mode	Branching ratio [%]
H⊸ bb	58.1
H→ WW	21.5
Η→ ττ	6.3
H→ ZZ	2.6
Η⊸ γγ	0.23

ttH, H to	Conference note
bb	ATLAS-CONF-2016-080
WW, ZZ, ττ (multi leptons)	ATLAS-CONF-2016-058
ΥY	ATLAS-CONF-2016-067
combination	ATLAS-CONF-2016-068

ttH (H->bb) Signal Regions

- ttH(bb) channel has largest branching ratio but large backgrounds
- Events selected by single lepton trigger
- Categorisation by # of reconstructed jets and # of b-tagged jets

Single lepton channel

- One tight electron or muon
- At least 4 jets
- At least 2 b-tagged jets

Di-lepton channel

- 2 tight opposite charge leptons (e or μ)
- At least 3 jets
- At least 2 b-tagged jets

ttH (H->bb) background composition

Exploit different background compositions in simultaneous fit of all regions to reduce uncertainties and normalise backgrounds

> tt+≥1b-jet, tt+≥1c-jet and tt+light-jets are the dominant backgrounds

Single lepton channel

- One tight electron or muon
- At least 4 jets
- At least 2 b-tagged jets

Di-lepton channel

- 2 tight opposite charge leptons (e or μ)
- At least 3 jets
- At least 2 b-tagged jets

ttH (H->bb) Discriminating variables

- H^{had}: scalar sum of all jets in single lepton channel
- H_t^{all} : scalar sum of jets +leptons in dilepton channel
- > Two stage multivariate discriminate in signal regions
 - Reco BDT: match jet to Higgs and top decays
 - Classification BDT or NN: separate signal from background

Profile likelihood fit in all regions

ttH (H->bb): tt+jets background modelling

- tt+jets estimate is leading uncertainty
- > Use PoPy6 NLO+PS
 - Correct p_T^{top} & p_T^{tt} at NNLO
- > tt+≥1b corrected to 4-flavour scheme NLO tt+bb calculation with Sherpa+OpenLoops
- > tt+≥1b and tt+≥1c normalisation treated as free parameters in the fit to data

tt+b: b-jet has a b-hadron matched to jet tt+B: B-jet has two b-hadrons matched to one jet

ttH (H->bb): tt+jets uncertainties

Uncertainty source	Δ	μ
$t\bar{t} + \ge 1b$ modelling	+0.53	-0.53
Jet flavour tagging	+0.26	-0.26
$t\bar{t}H$ modelling	+0.32	-0.20
Background model statistics	+0.25	-0.25
$t\bar{t} + \ge 1c \text{ modelling}$	+0.24	-0.23
Jet energy scale and resolution	+0.19	-0.19
$t\bar{t}$ +light modelling	+0.19	-0.18
Other background modelling	+0.18	-0.18
Jet-vertex association, pileup modelling	+0.12	-0.12
Luminosity	+0.12	-0.12
$t\bar{t}Z$ modelling	+0.06	-0.06
Light lepton (e, μ) ID, isolation, trigger	+0.05	-0.05
Total systematic uncertainty	+0.90	-0.75
$t\bar{t} + \ge 1b$ normalisation	+0.34	-0.34
$t\bar{t} + \geq 1c$ normalisation	+0.14	-0.14
Statistical uncertainty	+0.49	-0.49
Total uncertainty	+1.02	-0.89

Dominant uncertainties:

tt+jets background model

Main experimental uncertainties:

- Jet flavour tagging
- Jet energy scale and resolution

Systematically dominated with still large statistical limitation

ttH (H->bb) Results

ATLAS Preliminary $t\bar{t}H (b\bar{b}), \sqrt{s} = 13 \text{ TeV}, 13.2 \text{ fb}^{-1}$ Combination driven by single lepton Tot. channel sensitivity Stat. Tot. (Stat. Syst.) Best fit at µ_{ttH}=2.1^{+1.0}_{-0.9} **4.6** +2.9 (+1.4 +2.6) Dilepton **1.6** $^{+1.1}_{-1.1}$ ($^{+0.5}_{-0.5}$ $^{+1.0}_{-0.9}$) Single Lepton **2.1** $^{+1.0}_{-0.9}$ ($^{+0.5}_{-0.5}$ $^{+0.9}_{-0.7}$) Combined ATLAS Preliminary $t\bar{t}H (b\bar{b})$, $\sqrt{s} = 13 \text{ TeV}$, 13.2 fb⁻¹ 8 10 12 6 0 2 Δ 14 16 18 Dilepton Best fit $\mu = \sigma^{t\bar{t}H} / \sigma^{t\bar{t}H}_{SM}$ for $m_{H} = 125 \text{ GeV}$ Single Lepton > Observed 95% C.L. upper limit Expected $\pm 1\sigma$ (µ=0) Expected $\pm 2\sigma$ (µ=0) is 4.0 times SM cross section Combined Observed ----- Expected (µ=1) 2 6 8 10 0 4 12 95% CL limit on $\sigma/\sigma_{_{SM}}(t\bar{t}H)$ at $m_{_{H}}$ = 125 GeV Page 10

ttH multi-leptons (H->WW) or (H->ττ) or (H->ZZ)

ttH (multi. lep.) has small signal with small background

QMisReco

Other

Categorised in 4 orthogonal channels with ≥1 b-jet :

ATLAS

Simulation Preliminary

2 same charge light leptons, no τ_{had,} ≥5j 2 same charge light leptons, one τ_{had,} ≥4j 3 light leptons, ≥3j 4 light leptons, ≥2j

	Higg	s boson	decay	mode	$A \times \epsilon$
Category	WW^*	ττ	ZZ^*	Other	$(\times 10^{-4})$
$2\ell 0 au_{\rm had}$	77%	17%	3%	3%	14
$2\ell 1\tau_{had}$	46%	51%	2%	1%	2.2
3l	74%	20%	4%	2%	9.2
4 <i>l</i>	72%	18%	9%	2%	0.88

 τ_{had} : hadronic decay of a τ candidate from BDT on calorimeter and track info

Non-prompt 🔲 Diboson \s = 13 TeV $\Box t\overline{t}(Z/\gamma^*)$ tt W Background composition $2\ell 0\tau_{had} e\mu$ 2ℓ0τ_{had} ee $2\ell 0\tau_{had} \mu\mu$ S/B=0.09 S/B=0.13 S/B=0.13 3l $2\ell 1\tau_{had}$ 4*l* S/B=0.42 S/B=0.25 S/B=0.16

Dominant background:

- ttV, VV (from MC)
- Non-prompt leptons (estimated from data control regions)
- Electron charge mis-ID (Z+jets data)
- T_{had} mis-reco (MC normalised to data control regions)

ttH multi-leptons Results

> Cut and Count analysis in 6 categories + fit

- Systematic dominated by non-prompt background estimates
- > 4 lep has zero observed events
- > observed excess over background-only 2.2 σ

ttH (H->γγ)

- ttH (H->γγ) channel exploits high di-photon mass resolution of Higgs peak over background continuum
- > Events selected: 2 tight, isolated photons with E_T/m_{vv} > 0.35 (0.25) and ...

Leptonic channel

- At least 1 tight lepton
- At least 2 jets
- At least 1 b-tagged jet
- Z veto (m_{II} & m_{eγ})
- Et^{mis} >20 GeV for 1-tag events

Hadronic channel

- No tight lepton
- At least 5 jets
- At least 1 b-tagged jets

> Photon pair mass used as discriminating variable

Channel	Region	$t\bar{t}H(S)$	Bkgd (B)	tHjb + WtH	S/B	N _{Data}
II	all-hadronic	1.58	8.27	0.10	0.19	9
$\Pi \to \gamma \gamma$	leptonic	1.16	2.42	0.10	0.48	2

Mass window of m_{vv} [105,160] GeV contains 90% of signal

As in all channels: tHjb and WtH are treated as backgrounds, with SM production

ttH (H->γγ) Results

- Background continuum is estimated from exponential curve, fitted to the data side-bands
- Signal described as 2 sided Crystal Ball function

Measured signal strength is dominated by statistical uncertainties:

$$\mu_{t\bar{t}H} = -0.3 + 1.2 - 1.0 \text{ (tot.) } [+1.2 - 1.0 \text{ (stat.) }]$$

Summarise and repeat

	$H \rightarrow$	γγ		$H \rightarrow (WW, \tau\tau, ZZ)$					H	$\rightarrow b\bar{b}$		
Analysis	Narrow sig	nal peak:	Small signal and background:		Small signal and background:					Moderate signal in large backgrour		ind:
strategy	fit to <i>i</i>	$n_{\gamma\gamma}$		counting ex	periment				multivari	variate techniques		
Channels	leptonic	hadronic	2ℓSS	3ℓ	$2\ell SS+1\tau_{had}$ 4ℓ		sin	gle lepton		dilepton	ı	
Control	-			-				(4j,2	bj) (5j,2bj)	(3j,2bj)	
regions								(4j,3	bj) (4j,4bj)	(4j,2bj)	
								(≥ 6j,	2bj) (5j,3b	oj)		
Signal	mγ	γ	(ee) (e μ) ($\mu\mu$)	(3j,≥ 2bj	(≥ 4j,≥ 1bj)	(≥	2j,≥ 1bj)	(5	j,≥ 4bj)		(3j,3bj)	
regions			&	OR				(≥ 6j,3bj)		(≥ 4j,3bj)		j)
			$(\geq 5j, \geq 1bj) \geq 4j, \geq 1bj)$			$(\geq 6j,\geq 4bj)$ $(\geq 4j,\geq$		4j,≥ 4ł	bj)			
	1		D '				, TT •1	17/17		NT	=	
Cha	annel	ļ,	Region	ttH(S)	Bkgd (E	s)	$tH_{jb} +$	$\frac{VV tH}{2}$	5/B	N _{Data}	_	
Н -	$\rightarrow \gamma \gamma$	a	l-hadronic	1.58	8.27		0.10)	0.19	9		
			leptonic	1.16	2.42		0.1	0	0.48	2	_	
			$2\ell SS~ee$	1.99 ± 0.51	22.2 ± 3	3.4	$0.10 \pm$	0.03	0.09	26		
			$2\ell SS~e\mu$	4.82 ± 0.95	$5 \mid 38.5 \pm 5$	5.1	$0.26 \pm$	0.07	0.13	59		
$TT \rightarrow (TT)$	$W = - \overline{Z} \overline{Z}$		$2\ell SS \ \mu\mu$	2.85 ± 0.58	$3 \mid 21.2 \pm 3$	3.8	$0.15 \pm$	0.04	0.13	31		
$\Pi \to (W$	$H \to (WW, \tau\tau, ZZ)$ 2		$\ell SS + \tau_{had}$	1.43 ± 0.31	5.7 ± 1	L.7	$0.11 \pm$	0.03	0.25	14		
		3ℓ	6.2 ± 1.1	38.9 ± 5	5.3	0.30 ± 0.08		0.16	46			
			4ℓ	0.59 ± 0.10	1.42 ± 0	.24	$0.014 \pm$	0.006	0.42	0		
		l l+ie	ets (> 6j.3bj)	119 ± 16	11250 ± 2	40	$6.2 \pm$	1.5	0.011	11561	_	
		l l+ie	(5i, > 4bj)	11.8 ± 2.6	$ 429 \pm 2$	28	$0.91 \pm$	0.14	0.028	418		
$H \rightarrow b\bar{b}$		$\ell + iet$	s (> 6i, > 4bi)	44.9 ± 9.4	1191 ± 3	55	$2.10 \pm$	0.50	0.038	1285		
		dilep	ton (> 4i.3bi)	20.6 ± 4.2	1423 ± 4	45	$0.71 \pm$	0.20	0.014	1467		
		dilepto	on $(\geq 4j, \geq 4bj)$	6.6 ± 2.0	133 ± 1	12	$0.171\pm$	0.053	0.050	154	e 15	

ttH combination Signal Strength

Best fit of μ_{ttH} and uncertainty sources

- Higher sensitivity than Run 1 20 fb⁻¹ results
- Compatible with SM ttH cross section as well as background-only hypothesis

Uncertainty Source	Δ	μ
$t\bar{t}+\geq 1b \mod$	+0.34	-0.33
Jet flavour tagging	+0.19	-0.19
Background model statistics	+0.18	-0.18
$t\bar{t}+ \geq 1c \text{ modelling}$	+0.17	-0.17
Jet energy scale and resolution	+0.18	-0.18
$t\bar{t}H \mathrm{modelling}$	+0.20	-0.13
$t\bar{t}$ +light modelling	+0.14	-0.14
Other background modelling	+0.16	-0.15
Fake lepton uncertainties	+0.11	-0.12
Jet-vertex association, pileup modelling	+0.09	-0.09
Luminosity	+0.09	-0.09
$t\bar{t}Z$ modelling	+0.08	-0.07
Light lepton (e, μ) , photon, and τ ID, isolation, trigger	+0.04	-0.04
Total systematic uncertainty	+0.57	-0.54
$t\bar{t}+\geq 1b$ normalisation	+0.24	-0.24
$t\bar{t}+\geq 1c$ normalisation	+0.11	-0.11
Statistical uncertainty	+0.38	-0.38
Total uncertainty	+0.69	-0.66

- Orthogonally of channels ensured by common lepton definition
- Correlated systematics across channels: Xsec, BR, detector effects
- > Uncorrelated systematics: leading bkg model uncertainties

ttH combination Significance & Limits

Channel	Significance			
	Observed $[\sigma]$	Expected $[\sigma]$		
$t\bar{t}H, H \rightarrow \gamma\gamma$	-0.2	0.9		
$t\bar{t}H, H \to (WW, \tau\tau, ZZ)$	2.2	1.0		
$t\bar{t}H, H \rightarrow b\bar{b}$	2.4	1.2		
$t\bar{t}H$ combination	2.8	1.8		

> Observed upper limit on μ_{ttH} = 3.1

Expected limit (bkg only) = 1.4

- Combination is 50% better than dominated bb channel (expected)
- > Observed (expected) significance
 is 2.8 σ (1.8 σ)
- Result is above but still compatible with SM signal hypothesis

Conclusion

- ATLAS search for ttH production process performed in three channels ttH (bb), ttH (multi leptons) and ttH (γγ)
- > Results are shown for 13.3 fb⁻¹, 13 TeV pp collisions
- > Best fit value of ttH signal strength w.r.t. SM prediction is 1.8 ± 0.7
 - Observed significance of 2.8 σ (SM expectation of 1.8 σ)
- Sensitivity exceeds Run 1 8 TeV results
- Stay tuned!
 - Greater precision with full 2016 dataset expected
 - ~3x more data from 2016 still to be analysed

Backup

> Signal Region contributions from different sources

Channel	Region	WW	au au	ZZ	$b\overline{b}$	$\gamma\gamma$
$H \rightarrow \alpha \alpha$	all-hadronic	_	_	—	_	100%
$\Pi \to \gamma \gamma$	leptonic	_	—	—	_	100%
	$2\ell SS~ee$	76%	17%	2%	4%	_
	$2\ell { m SS}~e\mu$	77%	17%	3%	3%	—
$H \rightarrow (WW = -77)$	$2\ell { m SS}~\mu\mu$	79%	17%	3%	1%	—
$H \to (WW, \tau\tau, ZZ)$	$2\ell SS + \tau_{had}$	46%	51%	2%	1%	—
	3ℓ	74%	20%	4%	1%	—
	4ℓ	72%	18%	9%	—	—
	ℓ +jets ($\geq 6j, 3bj$)	5%	1%	1%	90%	_
$H ightarrow b ar{b}$	ℓ +jets (5j, \geq 4bj)	_	—	—	99%	—
	ℓ +jets ($\geq 6j, \geq 4bj$)	1%	—	1%	97%	—
	dilepton ($\geq 4j, 3bj$)	6%	1%	1%	90%	—
	dilepton ($\geq 4j, \geq 4bj$)	_	—	—	98%	—

ttH Run 1

- Observed combined significance was found to be 4.4 σ (expected 1.5 σ)
- Assuming the SM prediction of the ttH production, the measurement is able to confirm the presence of ttH over the background estimate with a sensitivity of 2.0 σ.
- LHC Run2 analysis benefits from large increase of *ttH* cross section, though backgrounds increase at a comparable rate in the signal regions

Cross section (fb) @NLO	tīH	tŦW	tīZ	tt (NNLO)
8 TeV	133	232	206	2,53E+05
13 TeV	507	566	760	8,32E+05
13 TeV / 8TeV	3.8	2.4	3.7	3.3

ttH combination log likelihood

ttH signal MC in all channels:

- NLO QCD matrix element computed by MadGraph5_aMC@NLO (arXiv:1405.0301)
- matched to the Pythia8 parton shower (arXiv:0710.3820)
- SM cross section at 13 TeV of 507 fb taken from the NLO calculation in strong and electroweak couplings (ATLAS-COM-CONF-2016-052)

ttH (bb) tt background

> Inclusive tt settings (p_T in centre of mass frame)

ME gen.	Powheg-Box	Powheg-Box	MG5_aMC	Powheg-Box	Powheg-Box
PS/UE gen.	Pythia 6.428	Herwig++ $2.7.1$	Herwig++ $2.7.1$	Pythia 6.428	Pythia 6.428
Ren. scale	$\sqrt{m_t^2 + p_{\mathrm{T,t}}^2}$	$\sqrt{m_t^2 + p_{\mathrm{T,t}}^2}$	$\sqrt{m_t^2 + \frac{1}{2}(p_{{\rm T},{\rm t}}^2 + p_{{\rm T},\bar{\rm t}}^2)}$	$\frac{1}{2} \cdot \sqrt{m_t^2 + p_{\mathrm{T,t}}^2}$	$2 \cdot \sqrt{m_t^2 + p_{\mathrm{T,t}}^2}$
Fact. scale	$\sqrt{m_t^2 + p_{\mathrm{T,t}}^2}$	$\sqrt{m_t^2 + p_{\mathrm{T,t}}^2}$	$\sqrt{m_t^2 + \frac{1}{2}(p_{\mathrm{T,t}}^2 + p_{\mathrm{T,\bar{t}}}^2)}$	$\frac{1}{2} \cdot \sqrt{m_t^2 + p_{\mathrm{T,t}}^2}$	$2 \cdot \sqrt{m_t^2 + p_{\mathrm{T,t}}^2}$
hdamp	m_t	m_t	_	$2 \cdot m_t$	m_t
ME PDF	CT10	CT10	CT10	CT10	CT10
PS/UE PDF	CTEQ6L1	CTEQ6L1	CTEQ6L1	CTEQ6L1	CTEQ6L1
Tune	P2012	UE-EE5	UE-EE5	P2012 radHi	P2012 radLo

tt+bb 4 flavour NLO setting

ME gen.	MG5_aMC	MG5_aMC	SherpaOL
PS/UE gen.	Herwig++ $2.7.1$	Pythia 8.210	\mathbf{Sherpa}
Renorm. scale	$\mu_{ m CMMPS}$	$\mu_{ m CMMPS}$	$\mu_{ m CMMPS}$
Fact. scale	$H_{ m T}/2$	$H_{ m T}/2$	$H_{ m T}/2$
Resumm. scale	$f_{ m Q}\sqrt{\hat{s}}$	$f_{ m Q} \sqrt{\hat{s}}$	$H_{\rm T}/2$
ME PDF	NNPDF3.0 4F	NNPDF3.0 4F	$CT10 \ 4F$
PS/UE PDF	CTEQ6L1	NNPDF2.3	
Tune	UE-EE-5	A14	Author's tune

- For the tt + ≥1b background, the inclusive tt sample is reweighted to a NLO tt+bb prediction
- uncertainties on the inclusive sample are labeled residual, while those on the NLO prediction are labeled reweighting.

Systematic source	How evaluated	$t\bar{t}$ categories
$t\bar{t}$ cross-section	$\pm 6\%$	All, correlated
NLO generator (<i>residual</i>)	Powheg-Box + Herwig++ vs. MG5_aMC + Herwig++	All, uncorrelated
Radiation (residual)	Variations of $\mu_{\rm R}$, $\mu_{\rm F}$, and $hdamp$	All, uncorrelated
PS & hadronisation (residual)	Powheg-Box + Pythia 6 vs. Powheg-Box + Herwig++	All, uncorrelated
NNLO top & $t\bar{t} p_{\rm T}$	Maximum variation from any NLO prediction	$t\bar{t} + \geq 1c, t\bar{t} + \text{light, uncorr.}$
$\begin{bmatrix} t\bar{t} + b\bar{b} \text{ NLO generator} \\ reweighting \end{bmatrix}$	SherpaOL vs. MG5_aMC + Pythia8	$t\bar{t}+\geq 1b$
$\begin{bmatrix} t\bar{t} + b\bar{b} \text{ PS \& hadronis.} \\ reweighting \end{bmatrix}$	MG5_aMC + Pythia8 vs. MG5_aMC + Herwig++	$t\bar{t}+\geq 1b$
$t\bar{t} + b\bar{b}$ renorm. scale reweighting	Up or down a by factor of two	$t\bar{t}+\geq 1b$
$t\bar{t} + b\bar{b}$ resumm. scale reweighting	Vary $\mu_{\rm Q}$ from $H_{\rm T}/2$ to $\mu_{\rm CMMPS}$	$t\bar{t}+\geq 1b$
$t\bar{t} + b\bar{b}$ global scales reweighting	Set $\mu_{\rm Q}$, $\mu_{\rm R}$, and $\mu_{\rm F}$ to $\mu_{\rm CMMPS}$	$t\bar{t}+\geq 1b$
$\begin{array}{c} t\bar{t} + b\bar{b} \text{ shower recoil} \\ reweighting \end{array}$	Alternative model scheme	$t\bar{t}+\geq 1b$
$\begin{bmatrix} t\bar{t} + b\bar{b} \text{ PDF} \\ reweighting \end{bmatrix}$	CT10 vs. MSTW or NNPDF	$t\bar{t}+\geq 1b$
$t\bar{t} + b\bar{b}$ MPI	Up or down by 50%	$t\bar{t} + \geq 1b$
$t\bar{t} + b\bar{b}$ FSR	Radiation variation samples	$ t\bar{t} + \geq 1b$
$t\bar{t} + c\bar{c}$ ME calculation	MG5_aMC + Herwig++ inclusive vs. ME prediction	$ t\bar{t} + \geq 1c$

ttH (bb) BDT

ttH (bb) classification BDT inputs 1 lepton

Variable	Definition	Region				
variable	Definition	\geq 6j, \geq 4b	≥ 6j, 3b	5j, ≥ 4b		
General kinematic variables						
$\Delta R_{\rm bb}^{\rm avg}$	Average ΔR for all <i>b</i> -tagged jet pairs	\checkmark	\checkmark	\checkmark		
$\Delta R_{bb}^{\max p_T}$	ΔR between the two <i>b</i> -tagged jets with the largest vector sum $p_{\rm T}$	\checkmark	_	_		
$\Delta \eta_{ii}^{\max}$	Maximum $\Delta \eta$ between any two jets	\checkmark	\checkmark	\checkmark		
$m_{ m bb}^{ m min\ }\Delta R$	Mass of the combination of the two <i>b</i> -tagged jets with the smallest ΔR	\checkmark	\checkmark	_		
$m_{ m jj}^{ m min \ \Delta R}$	Mass of the combination of any two jets with the smallest ΔR	_	_	\checkmark		
$m_{ m bj}^{ m max \ p_T}$	Mass of the combination of a <i>b</i> -tagged jet and any jet with the largest vector sum $p_{\rm T}$	_	\checkmark	_		
$p_{\mathrm{T}}^{\mathrm{jet5}}$	$p_{\rm T}$ of the fifth leading jet	\checkmark	\checkmark	\checkmark		
N ^{Higgs 30} _{bb}	Number of <i>b</i> -jet pairs with invariant mass within 30 GeV of the Higgs boson mass	\checkmark	_	\checkmark		
N_{40}^{jet}	Number of jets with $p_{\rm T} \ge 40 \text{ GeV}$	_	\checkmark	_		
$H_{\mathrm{T}}^{\mathrm{had}}$	Scalar sum of jet $p_{\rm T}$	_	\checkmark	\checkmark		
$\Delta R_{\rm lep-bb}^{\rm min\ \Delta R}$	ΔR between the lepton and the combination of the two <i>b</i> -tagged jets with the smallest ΔR	_	_	\checkmark		
Aplanarity	1.5 λ_2 , where λ_2 is the second eigenvalue of the momentum tensor [41] built with all jets	\checkmark	\checkmark	\checkmark		
Centrality	Scalar sum of the $p_{\rm T}$ divided by sum of the <i>E</i> for all jets and the lepton	\checkmark	\checkmark	\checkmark		
<i>H</i> 1	Second Fox–Wolfram moment computed using all jets and the lepton	\checkmark	\checkmark	\checkmark		
Variables from	n reconstruction BDT output					
BDT output		√*	√*	√*		
$m_{ m H}$	Higgs boson mass	\checkmark	\checkmark	\checkmark		
$m_{\mathrm{H,}b_{\mathrm{lep top}}}$	Mass of Higgs boson and <i>b</i> -jet from leptonic top	\checkmark	—	—		
$\Delta R_{ m Higgs\ bb}$	ΔR between <i>b</i> -jets from the Higgs boson	\checkmark	\checkmark	\checkmark		
$\Delta R_{\mathrm{H},t\bar{t}}$	ΔR between Higgs boson and $t\bar{t}$ system	√*	√*	√*		
$\Delta R_{\rm H, lep \ top}$	ΔR between Higgs boson and leptonic top	\checkmark	-	-		
$\Delta R_{\mathrm{H},b_{\mathrm{had top}}}$	ΔR between Higgs boson and <i>b</i> -jet from hadronic top	_	√*	√*		

ttH (bb): tt+jets uncertainties

Systematic source	How evaluated	tī categories
tt cross-section	±6%	All, correlated
NLO generator (<i>residual</i>)	Powheg-Box + Herwig++ vs. MG5_aMC + Herwig++	All, uncorrelated
Radiation (<i>residual</i>)	Variations of $\mu_{\rm R}$, $\mu_{\rm F}$, and <i>hdamp</i>	All, uncorrelated
PS & hadronisation (<i>residual</i>)	Powheg-Box + Pythia 6 vs. Powheg-Box + Herwig++	All, uncorrelated
NNLO top & $t\bar{t} p_{\rm T}$	Maximum variation from any NLO prediction	$t\bar{t} + \ge 1c, t\bar{t} + \text{light, uncorr.}$
$t\bar{t} + b\bar{b}$ NLO generator reweighting	SherpaOL vs. MG5_aMC+ Рутнія8	$t\overline{t} + \ge 1b$
$t\bar{t} + b\bar{b}$ PS & hadronis. reweighting	MG5_aMC + Pythia8 vs. MG5_aMC + Herwig++	$t\overline{t} + \ge 1b$
$t\bar{t} + b\bar{b}$ renorm. scale reweighting	Up or down a by factor of two	$t\overline{t} + \ge 1b$
$t\bar{t} + b\bar{b}$ resumm. scale reweighting	Vary μ_Q from $H_T/2$ to μ_{CMMPS}	$t\bar{t} + \ge 1b$
$t\bar{t} + b\bar{b}$ global scales reweighting	Set μ_Q , μ_R , and μ_F to μ_{CMMPS}	$t\overline{t} + \ge 1b$
$t\bar{t} + b\bar{b}$ shower recoil reweighting	Alternative model scheme	$t\overline{t} + \ge 1b$
$t\bar{t} + b\bar{b}$ PDF reweighting	CT10 vs. MSTW or NNPDF	$t\bar{t} + \ge 1b$
$t\bar{t} + b\bar{b}$ MPI	Up or down by 50%	$t\bar{t} + \geq 1b$
$t\bar{t} + b\bar{b}$ FSR	Radiation variation samples	$t\bar{t} + \geq 1b$
$t\bar{t} + c\bar{c}$ ME calculation	MG5_aMC + Herwig++ inclusive vs. ME prediction	$t\bar{t} + \geq 1c$

ttH (multi lepton) region definitions

SR/VR	Channel	Selection criteria	
SR	$2\ell 0\tau_{\rm had}$	Two tight light leptons with $p_{\rm T} > 25, 25 \text{ GeV}$	
	-	Sum of light lepton charges ± 2	
		Any electrons must have $ \eta_e < 1.37$	
		Zero $\tau_{\rm had}$ candidates	
		$N_{\rm jets} \ge 5 \text{ and } N_{b-\rm jets} \ge 1$	
SR	$2\ell 1 au_{ m had}$	Two tight light leptons, with $p_{\rm T} > 25$, 15 GeV	
		Sum of light lepton charges ± 2	
		Exactly one τ_{had} candidate, of opposite charge to the light leptons	
		m(ee) - 91.2 GeV > 10 GeV for ee events	
		$N_{\rm jets} \ge 4 \text{ and } N_{b-\rm jets} \ge 1$	
\mathbf{SR}	3ℓ	Three light leptons; sum of light lepton charges ± 1	
		Two same-charge leptons must be tight and have $p_{\rm T} > 20 \text{ GeV}$	
		$m(\ell^+\ell^-) > 12 \text{ GeV}$ and $ m(\ell^+\ell^-) - 91.2 \text{ GeV} > 10 \text{ GeV}$ for all SFOC pairs	
		$ m(3\ell) - 91.2 \text{ GeV} > 10 \text{ GeV}$	
		$N_{\text{jets}} \ge 4 \text{ and } N_{b-\text{jets}} \ge 1, \text{ or } N_{\text{jets}} = 3 \text{ and } N_{b-\text{jets}} \ge 2$	
SR	4ℓ	Four light leptons; sum of light lepton charges 0	
		All leptons pass "gradient" isolation selection	
		$m(\ell^+\ell^-) > 12 \text{ GeV}$ and $ m(\ell^+\ell^-) - 91.2 \text{ GeV} > 10 \text{ GeV}$ for all SFOC pairs	
		100 GeV $< m(4\ell) < 350$ GeV and $ m(4\ell) - 125$ GeV $ > 5$ GeV	
		$N_{\rm jets} \ge 2 \text{ and } N_{b-\rm jets} \ge 1$	
VR	Tight $t\bar{t}Z$	3ℓ lepton selection % and trigger selection	
		At least one $\ell^+\ell^-$ pair with $ m(\ell^+\ell^-) - 91.2 \text{ GeV} < 10 \text{ GeV}$	
		$N_{\rm jets} \ge 4 \text{ and } N_{b-\rm jets} \ge 2$	
VR	Loose $t\bar{t}Z$	3ℓ lepton selection % and trigger selection	
		At least one $\ell^+\ell^-$ pair with $ m(\ell^+\ell^-) - 91.2 \text{ GeV} < 10 \text{ GeV}$	
		$N_{\text{jets}} \ge 4 \text{ and } N_{b-\text{jets}} \ge 1, \text{ or } N_{\text{jets}} = 3 \text{ and } N_{b-\text{jets}} \ge 2$	
VR	WZ + 1 b-tag	3ℓ lepton selection % and trigger selection	
		At least one $\ell^+\ell^-$ pair with $ m(\ell^+\ell^-) - 91.2 \text{ GeV} < 10 \text{ GeV}$	
		$N_{\rm jets} \ge 1 \text{ and } N_{b-\rm jets} = 1$	
VR	ttW	$2\ell 0\tau_{\rm had}$ lepton selection % and trigger selection	
		$2 \le N_{\text{jets}} \le 4 \text{ and } N_{b-\text{jets}} \ge 2$	
		$H_{\rm T,jets} > 220 {\rm ~GeV}$ for ee and $e\mu$ events	
		$E_{\rm m}^{\rm miss} > 50 {\rm ~GeV}$ and $(m(ee) < 75 {\rm ~or~} m(ee) > 105 {\rm ~GeV})$ for e.e. events	

ttH multi-leptons Validation Regions

N_{jets}

ttH (multileptons) uncertainties

Uncertainty Source		$\Delta \mu$	
Non-prompt leptons and charge misreconstruction		-0.64	
Jet-vertex association, pileup modeling		-0.36	
$t\bar{t}W$ modeling		-0.31	
$t\bar{t}H$ modeling		-0.15	
Jet energy scale and resolution		-0.18	
$t\bar{t}Z$ modeling		-0.19	
Luminosity		-0.15	
Diboson modeling		-0.14	
Jet flavor tagging		-0.12	
Light lepton (e, μ) and τ_{had} ID, isolation, trigger		-0.10	
Other background modeling		-0.11	
Total systematic uncertainty		-0.9	

