Boosted and off-shell Higgs channels & ttH

DESY, LHC physics discussion, February 13, 2017

Christophe Grojean

DESY (Hamburg) Humboldt University (Berlin) (christophe.grojean@desy.de) True in the SM:

44 10⁻⁴

10

E λ_{ψ} 10

Christophe Grojean

3

Boosted and off-shell Higgs 2

<u>SM</u> DESY, Feb. 13, 2017

State of the art Higgs fit?

Christophe Grojean

Boosted and off-shell Higgs 2

inability to resolve the top loops

the bearable lightness of the Higgs: rich spectroscopy w/ multiple decays channels
 the unbearable lightness: loops saturate and don't reveal the physics @ energy physics (*)

Christophe Grojean

Boosted and off-shell Higgs 3

Christophe Grojean

Boosted and off-shell Higgs 3

Resolving top loop: Boosted Higgs

Christophe Grojean

Boosted and off-shell Higgs 4

Resolving top loop: Boosted Higgs

Grojean, Salvioni, Schlaffer, Weiler '13

	$\sqrt{s} [\text{TeV}]$	p_T^{\min} [GeV]	$\sigma_{p_T^{\min}}^{\mathrm{SM}} [\mathrm{fb}]$	δ	ϵ	gg,qg[%]
		100	(2200)	0.016	0.023	67, 31
	14	150	830	0.069	0.13	66, 32
		a ²⁰⁰	350	0.20	0.31	65, 34
		,00°,0250	160	0.39	0.56	63, 36
		+ xx 300	75	0.61	0.89	61, 38
		10 350	38	0.86	1.3	58,41
		400	20	1.1	1.8	56, 43
		450	11	1.4	2.3	54, 45
		500	6.3	1.7	2.9	52,47
		550	3.7	2.0	3.6	50, 49
		600	2.2	2.3	4.4	48,51
		650	1.4	2.6	5.2	46, 53
		700	0.87	3.0	6.2	45, 54
		750	0.56	3.3	7.2	43, 56
		800	0.37	3.7	8.4	42,57
	100	500	970	1.8	3.1	72,28
	100	2000	1.0	14	78	56, 43

VHE-LHC is the machine to decipher the gg \rightarrow h process

 $g \operatorname{mm} g \\ g \operatorname{mm} f \\ g \operatorname{mm} f \\ g \operatorname{mm} f \\ f \\ \overline{q} \\ \overline{q}$

$$\frac{\sigma_{p_T^{\min}}(\kappa_t, \kappa_g)}{\sigma_{p_T^{\min}}^{SM}} = (\kappa_t + \kappa_g)^2 + \delta \kappa_t \kappa_g + \epsilon \kappa_g^2$$

large pT, small rates need to focus on dominant decay modes

 $h \rightarrow b\overline{b}, WW, \tau\tau$

non-isolated "ditau-jets" (separation between the 2 tau's: $\Delta R \sim 2m_h/p_T \lesssim 0.5$)

$$\epsilon_{\rm tot} = {\rm BR}(h \to \tau \tau) \left(\sum_{i = \tau_{\ell} \tau_{\ell}, \tau_{\ell} \tau_{h}, \tau_{h} \tau_{h}} {\rm BR}(\tau \tau \to i) \epsilon_{i} \right) \simeq 2 \times 10^{-2}$$

di-W channel can help

Schlaffer, Spannowsky, Takeuchi, Weiler, Wymant '14

Christophe Grojean

Boosted and off-shell Higgs s

Grojean, Salvioni, Schlaffer, Weiler '13

$$\frac{\sigma_{p_T^{\min}}(\kappa_t, \kappa_g)}{\sigma_{p_T^{\min}}^{\mathrm{SM}}} = (\kappa_t + \kappa_g)^2 + \delta \kappa_t \kappa_g + \epsilon \kappa_g^2$$

large pT, small rates need to focus on dominant decay modes

 $h \rightarrow b\overline{b}, WW, \tau\tau$

non-isolated "ditau-jets" (separation between the 2 tau's: $\Delta R \sim 2m_h/p_T \lesssim 0.5$) $\epsilon_{\text{tot}} = \text{BR}(h \to \tau \tau) \left(\sum_{i = \tau_\ell \tau_\ell, \tau_\ell \tau_h, \tau_h \tau_h} \text{BR}(\tau \tau \to i) \epsilon_i \right) \simeq 2 \times 10^{-2}$

di-W channel can help

Schlaffer, Spannowsky, Takeuchi, Weiler, Wymant '14

Christophe Grojean

Don't think it is easy to produce a Higgs with high $p_{\rm T}$

	$\sqrt{s} [\text{TeV}]$	$p_T^{\min} \; [\text{GeV}]$	$\sigma_{p_T^{\min}}^{\mathrm{SM}} [\mathrm{fb}]$	δ	ϵ	gg,qg~[%]
		100	2200	0.016	0.023	67, 31
		150	830	0.069	0.13	66, 32
		200	350	0.20	0.31	65, 34
		250	160	0.39	0.56	63, 36
		300	75	0.61	0.89	61, 38
	14	350	38	0.86	1.3	58,41
		400	20	1.1	1.8	56, 43
		450	11	1.4	2.3	54, 45
		500	6.3	1.7	2.9	52,47
		550	7 3.7	2.0	3.6	50, 49
	\$	× 600	2.2	2.3	4.4	48, 51
	+	6 50	1.4	2.6	5.2	46, 53
	. a	700	0.87	3.0	6.2	45, 54
	entre	750	0.56	3.3	7.2	43, 56
		800	0.37	3.7	8.4	42,57
	100	500	970	1.8	3.1	72,28
		2000	1.0	14	78	56,43

VHE-LHC is the machine to decipher the gg \rightarrow h process

Boosted and off-shell Higgs 5

high p_T tail discriminates short and long distance physics contribution to $gg \rightarrow h$ $\sqrt{s} = 14 \text{ TeV}, \int dt \mathcal{L} = 3ab^{-1}, p_T > 650 \text{ GeV}$

(partonic analysis in the boosted "ditau-jets" channel)

see Schlaffer et al '14 for a more complete analysis including WW channel

Christophe Grojean

13

Paul

Boosted and off-shell Higgs 6

,13

Christophe Grojean

Boosted and off-shell Higgs 6

Boosted SUSY Higgs

natural susy calls for light stop(s) that can affect the Higgs physics

$$\frac{\Gamma(h \leftrightarrow gg)}{\Gamma(h \leftrightarrow gg)_{\rm SM}} = (1 + \Delta_t)^2 , \qquad \frac{\Gamma(h \rightarrow \gamma\gamma)}{\Gamma(h \rightarrow \gamma\gamma)_{\rm SM}} = (1 - 0.28\Delta_t)^2$$

$$\Delta_t \approx \frac{m_t^2}{4} \left(\frac{1}{m_{\tilde{t}_1}^2} + \frac{1}{m_{\tilde{t}_2}^2} - \frac{X_t^2}{m_S^2} \right)$$

Ĺ

... or not if $\Delta_{t}\approx 0$, e.g. light stop window in the MSSM

(stop right ~200-400GeV ~ neutralino w/ gluino < 1.5 TeV)

- Higgs rates
- + flavor constraints (ϵ_K , $B \rightarrow X_s + \gamma$)

Delgado et al '12

- RG evolution
- + DM

difficult direct search (trigger on stop+extra jet)

 $m_{\tilde{t}_1}$ [GeVBoosted and off-shell Higgs 7

Boosted SUSY Higgs

natural susy calls for light stop(s) that can affect the Higgs physics

$$\frac{\Gamma(h \leftrightarrow gg)}{\Gamma(h \leftrightarrow gg)_{\rm SM}} = (1 + \Delta_t)^2 , \qquad \frac{\Gamma(h \to \gamma\gamma)}{\Gamma(h \to \gamma\gamma)_{\rm SM}} = (1 - 0.28\Delta_t)^2$$
$$\Delta_t \approx \frac{m_t^2}{L} \left(\frac{1}{2} + \frac{1}{2} - \frac{X_t^2}{2}\right)$$

$$\Delta_t \approx \frac{m_t}{4} \left(\frac{1}{m_{\tilde{t}_1}^2} + \frac{1}{m_{\tilde{t}_2}^2} - \frac{n_t}{m_S^2} \right)$$

... or not if $\Delta_t \approx 0$, e.g. light stop window in the MSSM

Grojean, Salvioni, Schlaffer, Weiler '13

Christophe Grojean

Boosted and off-shell Higgs 8

Low pt: bounding light quark Yukawa's

Bishara et al '16 [1606.09253] Soreq et al '16 [1606.09621] Bonner, Logan '16 [1608.04376]

- Modifications of the light quark Yukawa couplings modify the differential distributions.
- Sudakov's dilogarithms 1606.09253 enhance the production cross-section

$$\sim k_Q rac{m_Q^2}{m_h^2} \ln^2 rac{p_\perp^2}{m_Q^2}$$

modifications are especially important in the region $m_Q \ll p_\perp \ll m_h$.

The main contribution appears from the interference with the top quark loop, which scales as y_Q not y²_Q.

Christophe Grojean

Boosted and off-shell Higgs 9

Low pt: bounding light quark Yukawa's

Bishara et al '16 [1606.09253] Soreq et al '16 [1606.09621]

Bonner, Logan '16 [1608.04376]

▶ from $h \rightarrow \gamma \gamma, ZZ, WW$ using $p_T \in [0, 70]$ GeV

Boosted and off-shell Higgs 9

Off-shell Higgs effects

naively small since the width is small (FH=4MeV, FH/MH=3×10-5) for a 125 GeV Higgs

but enhancement due to the particular couplings of H to V_{L}

Boosted and off-shell Higgs 10

Off-shell Higgs effects

naively small since the width is small (FH=4MeV, FH/MH=3×10-5) for a 125 GeV Higgs

but enhancement due to the particular couplings of H to V_L

Recent analysis of $gg \rightarrow H^* \rightarrow ZZ \rightarrow 4I$

CMS PAS HIG-14-002 ATLAS-CONF-2014-042

(about 15% of the Higgs events are far off-shell with m₄₁>300GeV)

Access to the Higgs width @ LHC?

often said, it is impossible to measure the Higgs width at the LHC. Not quite true. it can be done either via $\delta f = shell measurements or via the mass shift in gg \rightarrow h \rightarrow \gamma \gamma$ $gg \rightarrow H \rightarrow ZZ = (\sigma - BR)_{SM} = -\mu(\sigma - BR)_{SM}$ Narrow Width Approx.: on-shell $off-shell_{\kappa_Z} = g_{HZZ}/g_{HZZ'}^{SM}$ $\sigma_{\rm gg \rightarrow H \rightarrow ZZ}^{\rm on-peak]} \propto \frac{g_{\rm gg H}^2 g_{\rm HZZ}^2}{\Gamma_{\rm H}} \propto \frac{d\sigma_{\rm gg \rightarrow H \rightarrow ZZ}}{dm_{ZZ}^2} \propto g_{\rm gg H}g_{\rm HZZ} \frac{F(m_{ZZ})}{(m_{ZZ}^2 - m_{\rm H}^2)^2 + m_{\rm H}^2 \Gamma_{\rm H}^2} \\ \sigma_{\rm gg \rightarrow H \rightarrow ZZ}^{\rm off-peak,SM} \approx g_{\rm gg H}g_{\rm HZZ} \frac{\sigma_{\rm gg \rightarrow H \rightarrow ZZ}}{(m_{ZZ}^2 - m_{\rm H}^2)^2 + m_{\rm H}^2 \Gamma_{\rm H}^2} \\ \sigma_{\rm gg \rightarrow H \rightarrow ZZ}^{\rm off-peak,SM} \propto g_{\rm gg H}g_{\rm HZZ}^2 \propto g_{\rm gg H}g_{\rm HZZ}^2 \\ \sigma_{\rm gg \rightarrow H \rightarrow ZZ}^{\rm off-peak} \propto g_{\rm gg H}g_{\rm HZZ}^2 \\ \sigma_{\rm gg \rightarrow H \rightarrow ZZ}^{\rm off-peak} \propto g_{\rm gg H}g_{\rm HZZ}^2 \\ \sigma_{\rm gg \rightarrow H \rightarrow ZZ}^{\rm off-peak} \propto g_{\rm gg H}g_{\rm HZZ}^2 \\ \sigma_{\rm gg \rightarrow H \rightarrow ZZ}^{\rm off-peak} \propto g_{\rm gg H}g_{\rm HZZ}^2 \\ \sigma_{\rm gg \rightarrow H \rightarrow ZZ}^{\rm off-peak} \approx g_{\rm gg H}g_{\rm HZZ}^2 \\ \sigma_{\rm gg \rightarrow H \rightarrow ZZ}^{\rm off-peak} \approx g_{\rm gg H}g_{\rm HZZ}^2 \\ \sigma_{\rm gg \rightarrow H \rightarrow ZZ}^{\rm off-peak} \approx g_{\rm gg H}g_{\rm HZZ}^2 \\ \sigma_{\rm gg \rightarrow H \rightarrow ZZ}^{\rm off-peak} \approx g_{\rm gg H}g_{\rm HZZ}^2 \\ \sigma_{\rm gg \rightarrow H \rightarrow ZZ}^{\rm off-peak} \approx g_{\rm gg H}g_{\rm HZZ}^2 \\ \sigma_{\rm gg \rightarrow H \rightarrow ZZ}^{\rm off-peak} \approx g_{\rm gg H}g_{\rm HZZ}^2 \\ \sigma_{\rm gg \rightarrow H \rightarrow ZZ}^{\rm off-peak} \approx g_{\rm gg H}g_{\rm HZZ}^2 \\ \sigma_{\rm gg \rightarrow H \rightarrow ZZ}^{\rm off-peak} \approx g_{\rm gg H}g_{\rm HZZ}^2 \\ \sigma_{\rm gg \rightarrow H \rightarrow ZZ}^{\rm off-peak} \approx g_{\rm gg H}g_{\rm HZZ}^2 \\ \sigma_{\rm gg \rightarrow H \rightarrow ZZ}^{\rm off-peak} \approx g_{\rm gg H}g_{\rm HZZ}^2 \\ \sigma_{\rm gg \rightarrow H \rightarrow ZZ}^{\rm off-peak} \approx g_{\rm gg H}g_{\rm HZZ}^2 \\ \sigma_{\rm gg \rightarrow H \rightarrow ZZ}^{\rm off-peak} \approx g_{\rm gg H}g_{\rm HZZ}^2 \\ \sigma_{\rm gg \rightarrow H \rightarrow ZZ}^{\rm off-peak} \approx g_{\rm gg H}g_{\rm HZZ}^2 \\ \sigma_{\rm gg \rightarrow H \rightarrow ZZ}^{\rm off-peak} \approx g_{\rm gg \rightarrow H \rightarrow ZZ}^{\rm off-peak} \approx g_{\rm gg \rightarrow H \rightarrow ZZ}^2 \\ \sigma_{\rm gg \rightarrow H \rightarrow ZZ}^{\rm off-peak} \approx g_{\rm gg \rightarrow H \rightarrow ZZ}^2 \\ \sigma_{\rm gg \rightarrow H \rightarrow ZZ}^{\rm off-peak} \approx g_{\rm gg \rightarrow H \rightarrow ZZ}^2 \\ \sigma_{\rm gg \rightarrow H \rightarrow ZZ}^2 \approx g_{\rm gg \rightarrow H \rightarrow ZZ}^2 \\ \sigma_{\rm gg \rightarrow H \rightarrow ZZ}^2 \approx g_{\rm gg \rightarrow H \rightarrow ZZ}^2 \\ \sigma_{\rm gg \rightarrow H \rightarrow ZZ}^2 \approx g_{\rm gg \rightarrow H \rightarrow ZZ}^2 \\ \sigma_{\rm gg \rightarrow H \rightarrow ZZ}^2 \approx g_{\rm gg \rightarrow H \rightarrow ZZ}^2 \\ \sigma_{\rm gg \rightarrow H \rightarrow ZZ}^2 \approx g_{\rm gg \rightarrow H \rightarrow ZZ}^2 \\ \sigma_{\rm gg \rightarrow H \rightarrow ZZ}^2 \qquad \sigma_{\rm gg \rightarrow H \rightarrow ZZ}^2 \\ \sigma_{\rm gg \rightarrow H \rightarrow ZZ}^2 \qquad \sigma_{\rm gg \rightarrow H \rightarrow ZZ}^2 \\ \sigma_{\rm gg \rightarrow H \rightarrow Z}^2 \qquad \sigma_{\rm gg \rightarrow H \rightarrow ZZ}^2 \\ \sigma_{\rm gg \rightarrow H \rightarrow Z}^2 \qquad \sigma_{\rm gg \rightarrow H \rightarrow Z}^2$ e.g. Dobrescu, Lykken '12 Kauer, Passarino '12 What do we learn? BRinv <85%? Caola, Melnikov'13 $\kappa_g = g_{ggH} / g_{ggH}^{SM}$ $\sigma_{gg \to H \to ZZ}^{on-peak} \mathbb{N}_{r}^{k\bar{s}k\bar{Z}} competitive(with) global fits on BRinv BRinv BRinv Sig20%$ Campbell et al '13 $\kappa_Z = g_{\rm HZZ} / g_{\rm HZZ}^{\rm SM}$ $r = \Gamma_{\rm H}/\Gamma_{\rm H}^{\rm SM}$ Model independent analysis might motion to be robust because of unitarity issues $(q_i(m_b))$ might be quite different than $q_i(m_{41})$ Englert, Spannowski '14 DESY, Feb. 13, 2017 eu unu un unen myyyu

Christophe Grojean

Off-shell Higgs effects

naively small since the width is small (FH=4MeV, FH/MH=3×10-5) for a 125 GeV Higgs

but enhancement due to the particular couplings of H to V_{L}

Recent analysis of $gg \rightarrow H^* \rightarrow ZZ \rightarrow 4I$

CMS PAS HIG-14-002 ATLAS-CONF-2014-042

Access to top Yukawa coupling?

strong departure of the Higgs low energy theorem in the far off-shell region

Azatov, Grojean, Paul, Salvioni '14

Cacciapaglia et al. '14

Boosted and off-shell Higgs 10

DESY, Feb. 13, 2017

Christophe Grojean

Off-shell Higgs effects

naively small since the width is small (FH=4MeV, FH/MH = 3×10-5) for a 125 GeV Higgs

but enhancement due to the particular couplings of H to V_L

Recent analysis of $gg \rightarrow H^* \rightarrow ZZ \rightarrow 4I$

Access to top Yukawa coupling?

CMS PAS HIG-14-002 ATLAS-CONF-2014-042

Boosted and off-shell Higgs 10

Prospectives: HL-LHC14TeV, 300/fb and FCC100TeV, 20/ab

Azatov, Grojean, Paul, Salvioni '16

Validity of EFT analyses

Boosted and off-shell Higgs 12

EFT = "mass scale + coupling(s)"

Too often, people think of EFT as higher dimensional operators suppressed by a **cutoff scale**, but there is also a **coupling** between new physics and SM

of the EFT analysis. Good examples are Vector Boson Scattering and HH production

Christophe Grojean

Boosted and off-shell Higgs 13

EFT validity

 $\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum_{i} c_{i}^{(6)} \mathcal{O}_{i}^{(6)} + \sum_{j} c_{j}^{(8)} \mathcal{O}_{j}^{(8)} + \cdots,$ Included Ignored

— Under what conditions does EFT with D=6 operators adequately describe lowenergy phenomenology of some BSM models?

When D=8 operators or loop-suppressed D=6 effects are non-negligible? Azatov, Contino, Machado, Riva '16

——[How should experiments present EFT results so as to maximize their applicability range?

Can we answer from a bottom-up approach, i.e. by looking at experimental constraints?

Christophe Grojean

Boosted and off-shell Higgs 14

EFT validity

Expansion Validity: $E/\Lambda \ll 1$

Experimentally: better access to leading $c_i E^2 / \Lambda^2$ and not directly to Λ Truncation depends on $c^{(8)}_i E^4 / \Lambda^4$

Example: Fermi theory

$$\mathcal{L}_{\text{eff}} = \frac{2}{v^2} \left(\bar{e} \gamma^{\mu} \nu_e \right) \left(\bar{\nu}_{\mu} \gamma_{\mu} \mu \right)$$

low energy measurements give access to G_F , i.e. v, and not the true cutoff m_W = 1/2 g v

~~for a fixed deviation to the SM predictions~~

Weak couplings reduce the validity range of the EFT (as naively expected) Strong couplings extend it (g=4 π \Rightarrow Fermi theory would have been valid up to E \approx 3 TeV)

Christophe Grojean

Boosted and off-shell Higgs 15

Riva)

Ľ

(courtesy of

EFT validity: illustrative example

Contino, Falkowski, Goertz, Grojean, Riva '16

EFT validity: illustrative example

Consider mock measurement of $\sigma(qq
ightarrow$ Wh) at LHC at different invariant mass of final state

- Different limits correspond to taking into account measurements up to different M_{cut}

- Stronger limits on EFT are obtained for larger M_{cut}

 $-\!\![$ However, limits with lower Mcut are also useful, to constrain parameter space of model with M_V < 3 TeV

/! one shouldn't include bin $M_{cut} > M_V$, but experimentally no access to M_V

Contino, Falkowski, Goertz, Grojean, Riva '16

Christophe Grojean

Boosted and off-shell Higgs 17

EFT validity: illustrative example

Christophe Grojean

Boosted and off-shell Higgs 18