Rencontres de Moriond: QCD and high energy interactions Summary.

LHC physics discussions

Matthias Saimpert

Deutsches Elektronen-Synchrotron (DESY)

April 10th, 2017

Disclaimer

- \sim 90 talks of 15' each over 7 days (total 22.5 hrs).
- Summary in 20' (factor 60 reduction). Not all topics treated.
- I am not an expert in most of the topics mentioned in the talk.
- I tried to be as complementary as possible with the previous talk.
- All the Moriond QCD talks are available online if you are interested: the link (especially the experimental and theoretical summary talks)

Disclaimer

Ready?

- \sim 90 talks of 15' each over 7 days (total 22.5 hrs).
- Summary in 20' (factor 60 reduction). Not all topics treated.
- I am not an expert in most of the topics mentioned in the talk.
- I tried to be as complementary as possible with the previous talk.
- All the Moriond QCD talks are available online if you are interested: the link (especially the experimental and theoretical summary talks)

Outline

- Light hadrons
- Heavy flavour anomalies
- Exotic states at LHCb
- QCD at high energy with jets, photons and multibosons
- Heavy ions (if time (if time))

Light hadrons at BESIII and NA48

- Spectroscopy of the light hadrons very challenging for theory (non-perturbative QCD) \rightarrow usually driven by experiments.

Light hadrons at BESIII and NA48

- Spectroscopy of the light hadrons very challenging for theory (non-perturbative QCD) \rightarrow usually driven by experiments.
- **BESIII (China):** e^+e^- collisions from 1 to 2.3 GeV since 2009.
 - Hadron spectroscopy. Large sample at J/ψ , $\psi(2S)$, $\psi(3770)$, $\psi(4040)$, ...
 - ${\tt " Light}$ unflavored scalar f_0 states \rightarrow question of glueball content, more data needed.
 - pseudoscalar η and X states \rightarrow how many separate state around X(18xx)?

Light hadrons at BESIII and NA48

- Spectroscopy of the light hadrons very challenging for theory (non-perturbative QCD) \rightarrow usually driven by experiments.
- **BESIII** (China): e^+e^- collisions from 1 to 2.3 GeV since 2009.
 - Hadron spectroscopy. Large sample at J/ψ , $\psi(2S)$, $\psi(3770)$, $\psi(4040)$, ...
 - Light unflavored scalar f_0 states \rightarrow question of glueball content, more data needed
 - seudoscalar η and X states \rightarrow how many separate state around X(18xx)?
- **NA48 (CERN):** K^+ and K^- beams. $\sim 2 \cdot 10^{11}$ decays collected.
- New measurement of $K^+ \rightarrow \pi^0 l^+ \nu$ form factors
- input for $V_{\mu s}$ extraction.
- More precise and displaced w.r.t. н. previous NA48 measurement. (improved knowledge of the beam shape)

Matthias Saimpert (DESY) — LHC physics discussions — 10/04/2017 —

Heavy flavour: overview

- Study of the decays of HF mesons to test the CKM model.
 - \rightarrow Overall the CKM picture is in excellent agreement with data.
- General precision test of SM and study of rare decays to get hints on New Physics.
- Find new exotic states predicted (or not) by (non-perturbative) QCD.

Heavy flavour: list of 2-3 σ anomalies

- \sim 3.5 σ non-standard like-sign dimuon charge asymmetry
- $\sim 3.5\sigma$ enhanced $B
 ightarrow D^{(*)} au
 u$ rates
- \sim 3.5 σ suppressed branching ratio of $B_s
 ightarrow \phi \mu^+ \mu^-$
 - $\sim 3\sigma$ tension between inclusive and exclusive determination of $|V_{ub}|$

 $R_{D^{(*)}}$

 P'_5

 R_K

- $\sim 3\sigma$ tension between inclusive and exclusive determination of $|V_{cb}|$
- $\mathbf{2}-\mathbf{3}\sigma$ anomaly in $B
 ightarrow K^*\mu^+\mu^-$ angular distributions
- $2-3\sigma$ SM prediction for ϵ'/ϵ below experimental result
- $\sim 2.5\sigma$ lepton flavor non-universality in $B o K \mu^+ \mu^-$ vs. $B o K e^+ e^-$
- \sim 2.5 σ non-zero $h \rightarrow \tau \mu$

Heavy flavour: lepton universality

- Observation of enhanced semileptonic decay rates for 3rd generation leptons.

$$R_{D^{(*)}} = \frac{\Gamma(\bar{B} \to D^{(*)}\tau\bar{\nu})}{\Gamma(\bar{B} \to D^{(*)}\ell\bar{\nu})}\,; \quad \ell = e, \mu$$

- CKM-favoured decay modes occuring at tree level.
- Measurement $\sim 3.9\sigma$ from SM.
- Form factor contributions suppressed by $(m_{\tau}/m_B)^2$
- Measurement with $\tau \rightarrow$ hadrons on-going in LHCb.

Heavy flavour: lepton universality

LHCb

SM

 $q^2 \,[\text{GeV}^2/c^4]$

 $= 0.745^{+0.090}_{-0.074} \pm 0.036$ 20

15

Observation of enhanced semileptonic decay rates for 3rd generation leptons.

 $\mathbb{R}_{\mathbb{K}}$

0.5

 $\sim 2.6\sigma$

 $R_K = \frac{\Gamma(\bar{B} \rightarrow \bar{K} \mu^+ \mu^-)}{\Gamma(\bar{B} \rightarrow \bar{K} e^+ e^-)}$

10

5

$$R_{D^{(*)}} = \frac{\Gamma(\bar{B} \to D^{(*)}\tau\bar{\nu})}{\Gamma(\bar{B} \to D^{(*)}\ell\bar{\nu})}\,; \quad \ell = e, \mu$$

- . CKM-favoured decay modes occuring at tree level.
- Measurement $\sim 3.9\sigma$ from SM.
- Form factor contributions suppressed by $(m_{\tau}/m_{R})^{2}$
- . Measurement with $\tau \rightarrow$ hadrons on-going in LHCb.

Observation of enhanced muons vs electrons in the rare $B \rightarrow K I^+ I^-$ decays. -BaBar --- Belle

- Form factors cancel out in the ratio
 - several triggers used for electrons, different efficiency μ/e
 - LHCb: 1200 Kµµ reco. events, 250 Kee reco. events.
 - use of double ratios from $J/\psi \rightarrow l^+l^-$
 - coming soon: $R(K^*)$, $R(\phi)$.

Matthias Saimpert (DESY) -LHC physics discussions — 10/04/2017 — Page 7/23

Heavy flavour: P_5' in rare $\mathsf{B} o \mathsf{K}^* \mu \mu$

(artwork from talk by Mauro Dinardo @ Moriond-EW)

- P'₅ should be one of the less sensitive to hadronic corrections.
- $\sim 2.5 3\sigma$ for 4 $< q^2 <$ 8 GeV
- No significant deviation from ATLAS / CMS.
- Warning: uncontrolled off-peak effects of the charmonia.
- DHMVJC: hadronic from calculations, HEPFit: fitted from LHCb data
- CMS takes F_L and S-wave from separate analysis.

Matthias Saimpert (DESY) — LHC physics discussions — 10/04/2017 — Page 8/23

Heavy flavour: P_5' in rare $\mathsf{B} o \mathsf{K}^* \mu \mu$

- P'₅ should be one of the less sensitive to hadronic corrections.
- $\sim 2.5 3\sigma$ for 4 $< q^2 <$ 8 GeV
- No significant deviation from ATLAS / CMS.
- Warning: uncontrolled off-peak effects of the charmonia.
- DHMVJC: hadronic from calculations, HEPFit: fitted from LHCb data
- CMS takes F_L and S-wave from separate analysis.

Matthias Saimpert (DESY) — LHC physics discussions — 10/04/2017 — Page 8/23

Heavy flavour: Global fit of $b \rightarrow s$ data with EFT operators

- Global fit of LHCb data using EFT for short-distance effects (Wilson's coefficients)

$$\mathcal{L}_W = \mathcal{L}_{ ext{QCD}} + \mathcal{L}_{ ext{QED}} + rac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^\star \sum_i \mathcal{C}_i(\mu) \mathcal{O}_i(\mu)$$

- Many combinations of $b \rightarrow s$ data tested as input of the fit.
- Agreement of many studies that $C_{9\mu}^{NP}\sim -1$ improves the fit, whatever the set of measurements used as input.

- Additional studies show that very large hadronic power corrections would be required to remove the tension (>150%).
- Unresolved puzzle for theorists, which are waiting for more experimental inputs.

New exotic states at LHCb

- 5 new Ω_c^0 excited states observed in $\Xi_c^+ K^-$ spectrum (with $\Xi_c^+ o p K^- \pi^+$)

Also:

- The investigation of pentaquarks keeps going at LHCb, looking for new decay modes of $P_c(4450)$
- Involves preliminary steps, e.g. observation of $\Omega_b^0 \rightarrow \chi_{c1(2)} pK^-$, $\Xi_b^- \rightarrow J/\psi \Lambda K^-$, presented at Moriond QCD (discovery in $\Lambda_b^0 \rightarrow J/\psi pK^-$).

 \rightarrow Next steps: search in $\chi_{c1(2)}p$ and $J/\psi\Lambda$ mass spectra.

Total $b\bar{b}$ and $c\bar{c}$ production at NNLO

- NNLL resummation not yet included \rightarrow total cross sections only.
- Modified Top++ (NNLO) adapted to $b\bar{b}$ and $c\bar{c}$ production in hadron collisions. Large K-factors observed: ~ 2 (fixed-target) ~ 1.2 (LHC) / At $\sqrt{s} = 300$ TeV (cosmic rays), $\sigma_{cc} \sim \sigma_{ind}$.

Total $b\bar{b}$ and $c\bar{c}$ production at NNLO

- NNLL resummation not yet included \rightarrow total cross sections only.
- Modified Top++ (NNLO) adapted to $b\bar{b}$ and $c\bar{c}$ production in hadron collisions. Large K-factors observed: ~ 2 (fixed-target) ~ 1.2 (LHC) / At $\sqrt{s} = 300$ TeV (cosmic rays), $\sigma_{cc} \sim \sigma_{inel}$.

Test of QCD at high energy: overview

- Before, QCD used to be studied for its own sake:
 - Confirm data/theory agreement improvement when adding more α_s corrections
 - Test of the running of α_s predicted by pQCD.
 - Test of the QCD infrared structure: resummation techniques.
- Now, QCD corrections are more seen as mandatory inputs for accurate background predictions:
 - Constrain the proton PDFs at high x with inclusive jet (and photons?) data for new physics searches at the energy frontier.
 - = Higgs background modeling: SM accurate predictions of ZZ, WW, $\gamma\gamma$, ...
 - Check of soft QCD effects (underlying event, double parton scattering) to make sure it is reasonably well modeled in current MC generators. (not reported in this talk)

Jet production at NNLO in DIS collisions

- Full NNLO computation for single jet and dijet production in DIS collisions available (NNLOJET).
- Shape in general better described, but data / NNLO normalisation issue \rightarrow refit of the PDF required?

Inclusive 1 jet

Jet production at NNLO in DIS collisions

- Full NNLO computation for single jet and dijet production in DIS collisions available (NNLOJET).
- Shape in general better described, but data / NNLO normalisation issue \rightarrow refit of the PDF required?
- Extraction of α_s at NNLO by H1.

NNLO single jet production at the LHC

- Full NNLO computation for single jet production at the LHC now available (NNLOJET) \rightarrow percent level scale uncertainty!

NNLO single jet production at the LHC

- Full NNLO computation for single jet production at the LHC now available (NNLOJET) \rightarrow percent level scale uncertainty!
- Contributions to inclusive distributions come from individual jets, not events. Makes choice of scale ambiguous. Best choice different at NLO and NNLO.

ATLAS and CMS QCD results with jets and photons

- Many results shown. New result for Moriond: ATLAS inclusive jets at 8 TeV
- Best qualitative agreement with CT14. All required inputs to PDF fits are being finalised.

ATLAS and CMS QCD results with jets and photons

- Many results shown. New result for Moriond: ATLAS inclusive jets at 8 TeV
- Best qualitative agreement with CT14. All required inputs to PDF fits are being finalised.
- CMS also did studies for inclusive jets (ratio of 8 to 7 and 2.76 TeV) and dijet (8 TeV). Also extracted α_s . studies to be revisited with NNLO predictions.

 \rightarrow high x - gluon PDF improved, important for searches

Matthias Saimpert (DESY) — LHC physics discussions — 10/04/2017 — Page 15/23

ATLAS and CMS QCD results with jets and photons

- Many results shown. New result for Moriond: ATLAS inclusive jets at 8 TeV
- Best qualitative agreement with CT14. All required inputs to PDF fits are being finalised.
- CMS also did studies for inclusive jets (ratio of 8 to 7 and 2.76 TeV) and dijet (8 TeV). Also extracted α_s . studies to be revisited with NNLO predictions.

- My PhD analysis so I had to highlight it :) No CMS measurement available yet.
- Fiducial and differential cross section measurements of $m_{\gamma\gamma}$, $p_{\mathrm{T},\gamma\gamma}$, a_{T} , ϕ_{η}^* , $|\cos \theta_{\eta}^*|$, $\Delta \phi_{\gamma\gamma}$.
- Strong efforts put to probe the low q_T region, complementary to Drell-Yan measurements (which are $q\bar{q}$ -dominated). Probe the infrared structure of QCD.

- My PhD analysis so I had to highlight it :) No CMS measurement available yet.
- Fiducial and differential cross section measurements of $m_{\gamma\gamma}$, $p_{T,\gamma\gamma}$, a_{T} , ϕ_{η}^{*} , $|\cos \theta_{\eta}^{*}|$, $\Delta \phi_{\gamma\gamma}$.
- Strong efforts put to probe the low q_T region, complementary to Drell-Yan measurements (which are $q\bar{q}$ -dominated). Probe the infrared structure of QCD.
- Fixed-order (NLO, NNLO) misses α_s corrections and fail at describing the low q_T region
- RESBOS (NLO+NNLL) provides a good description of the low q_T region
- The new SHERPA 2.2.1 predictions (ME+PS@NLO) in good agreement with data

- My PhD analysis so I had to highlight it :) No CMS measurement available yet.
- Fiducial and differential cross section measurements of $m_{\gamma\gamma}$, $p_{\mathrm{T},\gamma\gamma}$, a_{T} , ϕ_{η}^* , $|\cos \theta_{\eta}^*|$, $\Delta \phi_{\gamma\gamma}$.
- Strong efforts put to probe the low q_T region, complementary to Drell-Yan measurements (which are $q\bar{q}$ -dominated). Probe the infrared structure of QCD.
- Fixed-order (NLO, NNLO) misses α_s corrections and fail at describing the low q_T region
- RESBOS (NLO+NNLL) provides a good description of the low q_T region
- The new SHERPA 2.2.1 predictions (ME+PS@NLO) in good agreement with data

- My PhD analysis so I had to highlight it :) No CMS measurement available yet.
- Fiducial and differential cross section measurements of $m_{\gamma\gamma}$, $p_{\mathrm{T},\gamma\gamma}$, a_{T} , ϕ_{η}^* , $|\cos \theta_{\eta}^*|$, $\Delta \phi_{\gamma\gamma}$.
- Strong efforts put to probe the low q_T region, complementary to Drell-Yan measurements (which are $q\bar{q}$ -dominated). Probe the infrared structure of QCD.
- Fixed-order (NLO, NNLO) misses α_s corrections and fail at describing the low q_T region
- RESBOS (NLO+NNLL) provides a good description of the low q_T region
- The new SHERPA 2.2.1 predictions (ME+PS@NLO) in good agreement with data

Progress in proton PDFs

- The NNPDF3.1 set will likely be released first, including a compatible subset of the new LHC data.
- CT17 and MMHT16 to be released within a few months.
- ABMP16 (arXiv:1701.05838) includes a large LHC W/Z data set, got closer to the other PDF sets.
- In progress in all groups: understanding of apparent disagreements between the available data sets.
- Reminder: already good agreement between the 3 main PDF sets for gluon-gluon luminosity achieved for Run 2.

Page 17/23

Diboson production at ATLAS and CMS

- News from the theory side:

- MATRIX: framework for automated NNLO+NNLL calculations (public release in preparation)
- New at Moriond: VV production via gluon fusion at NLO (interf. with Higgs), differential WW and WZ cross sections at NNLO
- NNLO / NLO ~ 10 15%. NNLO scale uncertainties ~ 5%
- ATLAS and CMS results: good agreement with NNLO calculations, limits on aTGC/aQGC.

- Do you believe than proton proton collisions are complicated?

- Do you believe than proton proton collisions are complicated?
- Heavy ion collisions: very complicated interplay of many phenomena

- Do you believe than proton proton collisions are complicated?
- Heavy ion collisions: very complicated interplay of many phenomena

- γ , *W*, *Z* do not interact strongly \rightarrow provide information about initial state (nuclear PDFs).

- Do you believe than proton proton collisions are complicated?
- Heavy ion collisions: very complicated interplay of many phenomena

- γ , *W*, *Z* do not interact strongly \rightarrow provide information about initial state (nuclear PDFs).
- Hydrodynamic expansion \rightarrow "anisotropic flow" (fluctuations, impact parameter)

- Do you believe than proton proton collisions are complicated?
- Heavy ion collisions: very complicated interplay of many phenomena

- γ , *W*, *Z* do not interact strongly \rightarrow provide information about initial state (nuclear PDFs).
- Hydrodynamic expansion \rightarrow "anisotropic flow" (fluctuations, impact parameter)

Jets (quenching, near-side peak), quarkonia (thermo-chronometers), used to probe the medium properties

Nuclear PDFs

- EPPS16: 1st nuclear parton distributions with LHC pPb data (previous: EPS09)
- Larger uncertainties reflect more realistic analysis
- No tension between data sets exist \rightarrow universality
- Proton-Lead run in 2016 expected to have strong impact in nPDFs

Flow anisotropies in ALICE

- Heavy ion collision: strongly-interacting non-spherical system (mainly driven by the impact parameter and event fluctuations)
- Spatial anisotropies (pressure) lead to momenta anisotropies (Navier-Stokes)
- Analyse Fourier components of azimuthal distribution. Expect a big dipole component "v₂" at mid-centrality (very elliptic)

Flow anisotropies in ALICE

- Heavy ion collision: strongly-interacting non-spherical system (mainly driven by the impact parameter and event fluctuations)
- Spatial anisotropies (pressure) lead to momenta anisotropies (Navier-Stokes)
- Analyse Fourier components of azimuthal distribution. Expect a big dipole component "v₂" at mid-centrality (very elliptic)

Anomalous evolution of the near-side jet peak shape in ALICE

- Goal: study interaction of low p_T jets with medium
- Consider angular correlation between a trigger and an associated particle.
- Interactions would appear as modification of the near-side peak

Static medium:

Broadening

Matthias Saimpert (DESY) — LHC physics discussions — 10/04/2017 — Page 22/23

Anomalous evolution of the near-side jet peak shape in ALICE

- Goal: study interaction of low p_T jets with medium
- Consider angular correlation between a trigger and an associated particle.
- Interactions would appear as modification of the near-side peak

Matthias Saimpert (DESY) — LHC physics discussions — 10/04/2017 — Page 22/23

Anomalous evolution of the near-side jet peak shape in ALICE

- Goal: study interaction of low p_T jets with medium
- Consider angular correlation between a trigger and an associated particle.
- Interactions would appear as modification of the near-side peak

Small (Large) broadening in $\Delta \phi$ ($\Delta \eta$), Depletion around ($\Delta \phi, \Delta \eta$) = (0,0). Comparison with multi-phase transport models.

Matthias Saimpert (DESY) — LHC physics discussions — 10/04/2017 — Page 22/23

 A lot of work done in hadron spectroscopy, measurements are still ahead of theory despite improvements in lattice QCD computations.

- A lot of work done in hadron spectroscopy, measurements are still ahead of theory despite improvements in lattice QCD computations.
- Remarkable progress in QCD calculations: NNLO = common place (jets, diboson, $t\bar{t}/b\bar{b}/c\bar{c}$, etc). But no anomalies observed at the energy frontier.

- A lot of work done in hadron spectroscopy, measurements are still ahead of theory despite improvements in lattice QCD computations.
- Remarkable progress in QCD calculations: NNLO = common place (jets, diboson, $t\bar{t}/b\bar{b}/c\bar{c}$, etc). But no anomalies observed at the energy frontier.

Theorists are testing "unmotivated" ideas
 (expression from theoretical summary)
 → "data-driven theory"

- A lot of work done in hadron spectroscopy, measurements are still ahead of theory despite improvements in lattice QCD computations.
- Remarkable progress in QCD calculations: NNLO = common place (jets, diboson, $t\bar{t}/b\bar{b}/c\bar{c}$, etc). But no anomalies observed at the energy frontier.

- Theorists are testing "unmotivated" ideas (expression from theoretical summary)
 → "data-driven theory"
- The hottest topics discussed were the heavy flavour anomalies, especially the tensions on lepton universality.

- A lot of work done in hadron spectroscopy, measurements are still ahead of theory despite improvements in lattice QCD computations.
- Remarkable progress in QCD calculations: **NNLO** = common place (jets, diboson, $t\bar{t}/b\bar{b}/c\bar{c}$, etc). But no anomalies observed at the energy frontier.

Seriously?

- Theorists are testing "unmotivated" ideas (expression from theoretical summary)
 → "data-driven theory"
- The hottest topics discussed were the heavy flavour anomalies, especially the tensions on lepton universality.
- If confirmed, it seems very hard to explain why lepton universality breaks down only in such very peculiar processes.

Rencontres de Moriond: QCD and high energy interactions Summary.

Thank you for your attention!

Matthias Saimpert (DESY)

LHC physics discussions

10/04/2017

