(Summary)² of Moriond EW Interactions 2017

Stefano Di Vita

DESY (Hamburg)

LHC Physics Discussion DESY, Apr 10, 2017

Remember ...

I'm just a poor theorist!

- I work on Higgs physics and on multi-loop calculations come say hi in 2a/308!
- I will present just a small selection mostly related to what I (should) understand better
- My talk mainly focuses on experimental results
- Heavy flavor was a hot topic ... wait for Matthias' talk, and for LHCb results on Apr 18 @ CERN
- Many interesting presentations left out of this review check the slides!
- I shamelessly ripped off the original slides

Outline

Outline

$h ightarrow ZZ^* ightarrow 4\ell$ by CMS: overview [talk by Oda, CMS-PAS-HIG-16-041]

- Probing 4 (ggH, VBF, VH, ttH) production modes with 7 event categories.
- Make kinematic discriminants using matrix elements with inputs of kinematic properties to reject background events and categorize signal events.

 $h
ightarrow ZZ^*
ightarrow 4\ell$ by CMS: Signal strengths [talk by Oda, CMS-PAS-HIG-16-041]

- $\mu = 1.05^{+0.15}_{-0.14}$ (stat.) $^{+0.11}_{-0.09}$ (syst.)
 - Combined signal strength at m_H=125.09 GeV.
- Simplified template cross sections for $|y_H| < 2.5$.

S. Di Vita (DESY)

 $h o ZZ^* o 4\ell$ by CMS: $d\sigma/dp_T$ [talk by Oda, CMS-PAS-HIG-16-041]

- Differential cross-section with respect to p_T(H) and the number of jets.
- · Consistent with the SM expectations within uncertainty.

S. Di Vita (DESY)

$h ightarrow ZZ^* ightarrow 4\ell$ by CMS: Higgs mass [talk by Mei, CMS-PAS-HIG-16-041]

Mass is determined by 3D measurement with $m(Z_1)$ constraint

- Event-by-event mass uncertainty : $D_{mass} = \sigma_{m_{4l}}/m_{4l}$, propagated from individual lepton p_T resolution (Corrected in data/MC using $Z \rightarrow II$, events)
- Matrix element kinematic discriminant: $\mathcal{D}_{bkg}^{kin} = \left[1 + \frac{\mathcal{P}_{bkg}^{q\bar{q}}(\vec{\Omega}^{H \to 4\ell} | m_{4\ell})}{\mathcal{P}_{siv}^{gg}(\vec{\Omega}^{H \to 4\ell} | m_{4\ell})}\right]$

$h ightarrow ZZ^* ightarrow 4\ell$ by CMS: Higgs mass <code>[talk by Mei, CMS-PAS-HIG-16-041]</code>

Mass is determined by 3D measurement with $m(Z_1)$ constraint

- Event-by-event mass uncertainty : $D_{mass} = \sigma_{m_{41}}/m_{41}$, propagated from individual lepton p_{T} resolution (Corrected in data/MC using Z \rightarrow II events)
- Matrix element kinematic discriminant: $\mathcal{D}_{bkg}^{kin} = \left[1 + \frac{\mathcal{P}_{bkg}^{q\bar{q}}(\vec{\Omega}^{H \to 4\ell} | m_{4\ell})}{\mathcal{P}_{siv}^{gg}(\vec{\Omega}^{H \to 4\ell} | m_{4\ell})}\right]$

$h ightarrow ZZ^* ightarrow 4\ell$ by CMS: Higgs mass [talk by Mei, CMS-PAS-HIG-16-041]

Result and precision gain

Use per event mass uncertainty + ME-based kinematic discriminant + Z₁ mass constraint:

125.26 ± 0.20 (stat.) ± 0.08 (sys.) GeV

Run I ATLAS+CMS (4I, $\gamma\gamma$) combination: 125.09 ± 0.21(stat.)± 0.11(sys.) GeV

$h ightarrow ZZ^* ightarrow 4\ell$ by CMS: Higgs width [talk by Oda, CMS-PAS-HIG-16-{041,033}]

- Mass width is measured with two very different methods.
- $\Gamma_H = 0.00^{+0.41}_{-0.00}$ GeV with only on-shell
 - Tighter limit than Run 1
- $\Gamma_{\!H} = 10^{+14}_{-10}$ MeV with both on-shell and off-shell
 - With strong theory assumptions
 - With only 12.9 fb-1

S. Di Vita (DESY)

Fiducial cross-section [talk by Oda, ATL-CONF-2016-081; CMS-PAS-HIG-16-{020,041}]

 Total (ATLAS) and fiducial σ_{pp→H} [pb] ATLAS Preliminary ____ σ_{pp→H} m_H = 125.09 GeV 100 QCD scale uncertainty (CMS) cross sections are $\triangle H \rightarrow \gamma \gamma = \oplus H \rightarrow ZZ^* \rightarrow 4H$ Tot. uncert. (scale ⊕ PDF+α) comb. data svst. unc. consistent with N³LO QCD 60 calculation with NLO electroweak corrections. 40 20 5.1 fb⁻¹(7 TeV), 19.7 fb⁻¹(8 TeV), 35.9 fb⁻¹(13 TeV) Vs = 7 TeV, 4.5 fb⁻¹ σ_{fid} [fb] vs = 8 TeV. 20.3 fb⁻¹ 6 CMS Preliminary $\sqrt{s} = 13 \text{ TeV}, 13.3 \text{ fb}^{-1}(\gamma \gamma), 14.8 \text{ fb}^{-1}(ZZ^*)$ 8 9 10 11 12 13 5 √s [TeV] 19.7 fb⁻¹ (8 TeV) + 12.9 fb⁻¹ (13 TeV) Systematic uncertainty e CMS Preliminary Standard model (m. = 125 GeV, N³LO gg→ H) an H-ave Data (best-fit m.) 3 syst. uncertainty SM (m.= 125.09 GeV) norm. LHC Higgs XSWG YR4 ADD: MORNLO HERRER 40 pp \rightarrow (H \rightarrow 4l) + X 10 11 12 13 14 6 7 8 q 10 11 13 √s (TeV) is (TeV)

Couplings to fermions and bosons strongly constrained by Run I measurements.

Search for $h ightarrow \mu^+ \mu^-$ by ATLAS $_{\mbox{\tiny [talk by Gaycken]}}$

Signalstrength μ extracted from simultaneous fit to $m_{\mu\mu}$ in all categories.

- signal: Crystal-ball
 +Gaussian
 Shape fixed to prediction of simulation.
- background:
 exponential
 PMI

 Counsiser (')
 - + BW \otimes Gaussian (Z)

ATLAS-CONF-2017-014

Higgs couplings to 2nd & 3rd gen: recap [talk by Gaycken]

Measured signal strength μ and 95% CL limit on $\sigma \times$ Br relative to the SM expectation for $m_{\rm H} = 125$ GeV:

overview

- ttH production is the best direct way to probe the coupling between top quark and Higgs boson
 - tree-level process, cross section prop. to λ_t^2
 - complementary evidence to loop-induced ggH, which in the SM is also dominated by the λ_t^2 contribution from the top quark loop
- SM ttH cross section at 13 TeV: 507 fb: ~1/96th of ggH
 - small, but top quarks in the final state provide good handles to trigger and select the events

Searches can be approximately grouped in:

- Hadronic $H \rightarrow bb, H \rightarrow \tau_h \tau_h$
- Leptonic $H \rightarrow WW, H \rightarrow \tau_{\ell} \tau_{any}$
- Bosonic:

 $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ^* \rightarrow 4\ell$

Sensitivity on μ: ~1·SM, limited by systematics
 – dominated by those on tt+(b-)jets background

S. Di Vita (DESY)

multilepton

- Both results compatible with SM within about 1o.
- Significance wrt μ(ttH) = 0 hypothesis:
 - ATLAS: 2.2 σ (expected for SM ttH: 1.0 σ)
 - CMS: ~ 3.3 σ (expected for SM ttH: 2.5 σ)

Conclusion

• Q: "Evidence for ttH production?" A: "Statistically, ..."

A combination of ATLAS & CMS ttH results would likely be incompatible with $\mu=0$

".... but"

there's not yet a single analysis with a strong & unambiguous ttH signal, and it will take time and effort to get there.

Double Higgs production [talk by Cadamuro]

- Destructive interference of the two diagrams → small σ_{HH}
- Effective lagrangian used to model BSM effects: anomalous λ_{HHH} and y_t couplings and three new contact interactions
 - large modification of σ_{HH}

.3 .2 .1 0

Pp→ZHH

λ/λ_{SM}

10⁰

10⁻¹

3

iGraph5

Double Higgs production [talk by Cadamuro]

NEW: $bb\tau\tau$ by CMS [CMS-PAS-HIG-17-002]

Double Higgs production [talk by Cadamuro]

"Analyses doing better than expected: Projections too conservative?"

Double Higgs production & the Higgs self-coupling [talk by Haisch]

 μ as a function of the Higgs self-coupling λ

$$R = \frac{\sigma(pp \to hh)}{\sigma(pp \to hh)_{\rm SM}} = 2.1 - 10.8\lambda + 17.2\lambda^2$$

$$R = 1 \implies \lambda_{1,2} = \{\lambda_{\rm SM}, 3.8\lambda_{\rm SM}\}$$

Double Higgs production & BSM [talk by Cadamuro]

More general (and motivated): EFT approach see also [PRD92 (2015) 035001]

JHEP04 (2015) 167 , LHCHXSWG-2016-001

- Effective Lagrangian obtained by adding dim-6 operators to the SM Lagrangian
- = Results in a modification of the SM λ_{HHH} and y_t couplings and introduces three new contact interactions
 - $\, \circ \,$ changing these 5 couplings affect σ_{HH} and the HH kinematics
- Analyses are exploring the 5-dimensional space of these couplings
 - a parametrization of σ_{HH}(λ_{HHH}, y_t, c₂, c_g, c_{2g}) is used

λ from single-Higgs production $_{\rm [talk by Haisch]}$

λ from single-Higgs production $_{\rm [talk by Haisch]}$

Switch on 1 operator: $\frac{\bar{c}_6}{\Lambda^2}(H^{\dagger}H)^3 \Rightarrow$ loop-suppressed effect

All production & decays channels receive two types of contributions: i) a process dependent one, which is linear in \overline{c}_6 ; ii) a universal one associated to Higgs wave function renormalization, which contains a piece quadratic in \overline{c}_6

Gorbahn & UH, 1607.03773; Degrassi et al., 1607.04251; Bizoń, et al., 1610.05771

DV, Grojean, Panico, Riembau, Vantalon [1704.01953] [Maybe a slide from Moriond EW 2018? :)]

Warning: a global EFT analysis (w/ 10 unconstrained Higgs-deformations) @ HL-LHC 14 TeV with 3 ab^{-1} shows less optimistic prospects for single-Higgs determinations of $\lambda_{hhh} \equiv \lambda_{hhh}^{SM}(1 + \delta \kappa_{\lambda})$

Outline

M_W measurement by ATLAS [talk by Andari]

In a traditional template fit analysis, Mw can be extracted from:

- > Lepton transverse momentum: p_{τ}'
- insensitive to recoil

- sensitive to pTW modelling, higher order QCD, PDF, W polarisation, charm mass

> Neutrino transverse mass ρ_T^{v}

$$\vec{p}_T^v = -(\vec{p}_T^l + \vec{u})$$

u: the recoil measured as the sum of the energies in topoclusters excluding the lepton itself -->sensitive to pile-up, UE

- > W transverse mass $m_T = \sqrt{2 p_T' p_T'} (1 \cos \Delta \phi(l, v))$
- low sensitivity to pTW, smaller pdf uncertainties
- smaller non-pQCD uncertainties
- Recoil modelling crucial, sensitivity to pile-up, UE

31

S. Di Vita (DESY)

Moriond EW summary

M_W measurement by ATLAS [talk by Andari]

Physics modeling

No single generator able to describe all observed distributions.

Start from the Powheg+Pythia8 and apply corrections. Use ancillary measurements of Drell-Yan processes to validate (and tune) the model and assess systematic uncertainties.

M_W measurement by ATLAS [talk by Andari]

		5	0							
	W-boson charge				W^+		W^{-}		Combined	
	Kinematic distri	bution		p_{T}^ℓ	m_{T}	p_{T}^{ℓ}	m_{T}	p_{T}^ℓ	m_{T}	
	δm_W [MeV]									
	Fixed-order P	DF uncertainty		13.1	14.9	12.0	14.2	8.0	8.7	
000	AZ tune			3.0	3.4	3.0	3.4	3.0	-3.4	
QUD	Charm-quark	mass		1.2	1.5	1.2	1.5	1.2	1.5	
	Parton showe	r $\mu_{\rm F}$ with heavy-flavour decorre	lation	5.0	6.9	5.0	6.9	5.0	6.9	
	Parton showe	r PDF uncertainty		3.6	4.0	2.6	2.4	1.0	1.6	
	Angular coeffi	cients		5.8	5.3	5.8	5.3	5.8	5.3	
	Total			15.9	18.1	14.8	17.2	11.6	12.9	
		Decay channel	W -	$\rightarrow ev$	$v \qquad W \rightarrow \mu v$		-			
EW		Kinematic distribution	p_{T}^{ℓ}	m_{T}	p_{T}^{ℓ}	m_{T}				
		δm_W [MeV]								
		FSR (real)	< 0.1	< 0.1	< 0.1	< 0.1				
		Pure weak and IFI corrections	3.3	2.5	3.5	2.5				
		FSR (pair production)	3.6	0.8	4.4	0.8				
		Total	4.9	2.6	5.6	2.6	-			

Physics modeling uncertainties

Fixed-order PDF uncertainties are dominant:

- PDF variations (25 error eigenvectors) of CT10nnlo applied simultaneously to the boson rapidity, Ai, and p_T distributions.
- Envelope taken from CT14 and MMHT2014~3.8 MeV

The PDF uncertainties very similar between p_T and m_T but strongly anti-correlated between W^+ and W^-

= 80369.5 ± 18.5 MeV,	m_W	=	$80369.5 \pm 6.8 \text{ MeV}(\text{stat.}) \pm 10.6 \text{ MeV}(\text{exp. syst.}) \pm 13.6 \text{ MeV}(\text{mod. syst.})$
		=	80369.5 ± 18.5 MeV,

Combined	Value	Stat.	Muon	Elec.	Recoil	Bckg.	QCD	EWK	PDF	Total	χ^2/dof
categories	[MeV]	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	of Comb.
$m_{\rm T}$ - $p_{\rm T}^{\iota}$, W^{\pm} , e- μ	80369.5	6.8	6.6	6.4	2.9	4.5	8.3	5.5	9.2	18.5	29/27

The result is consistent with the SM expectation, compatible with the world average and competitive in precision to the currently leading measurements by CDF and D0

$\sin^2\theta_{\rm lept\ [talk\ by\ Han]}^{\rm eff}$

$$f\bar{f} \to Z \to \ell^+\ell^-$$
: $\sin^2 \theta_{\text{lept}}^{\text{eff}} \equiv Re[\kappa_\ell(M_Z)]\sin^2 \theta \equiv \frac{1}{4|Q_\ell|} \left(1 - \frac{Re[g_V^\ell]}{Re[g_A^\ell]}\right)$

The most precise results, LEP b-quark A^{0,b}_{fb} and SLD beam LR-polarization A_{lr}, differ 3.2σ

$\sin^2 \theta_{\text{lept}}^{\text{eff}}$ in Drell-Yan by D0 [talk by Han]

at Tevatron: reconstruct from Pythia's sin $\theta^{B(orn)} \leftrightarrow FB$ charge asymmetry in the distribution of the emission angle of $p_T^{\ell^-}$ relative to the incoming q momentum (in the Collins-Soper frame)

$\sin^2 \theta^B_W$	0.22994			
Statistical uncertainty	0.00059			
Systematic uncertainties				
Momentum calibration	0.00002			
Momentum resolution	0.00004			
Background	0.00010			
Efficiencies	0.00001			
Total systematic	0.00011			
PDF	0.00027			
Total	0.00066			

$$\sin^2 \theta_{\text{eff}}^{\ell} = 0.23002 \pm 0.00066$$
$$M_W = 80441 \pm 33 \text{ MeV}/c^2$$

New! D0 Note 6497-CONF

* The D0 Z \rightarrow ee/µµ channels differ ~1.4 σ

Outline

Why the top mass? A matter of life and death :)

- Higgs pole mass M_h now known with *per mille* accuracy $\Rightarrow \lambda(\mu)$
- Top pole mass $M_t M_t^{
 m MC} \sim 1 \; {
 m GeV}$
- New estimates of renormalon ambiguities, $\sim 70~\text{MeV}$ [Beneke et al 16]
- Actually the important quantity is the running Top Yukawa y_t(μ)
- Also $\alpha_s(\mu)$ plays a role

[[]Degrassi, DV, Elias-Miró, Espinosa, Giudice, Isidori, Strumia 12]

Top Mass combination by D0 [talk by Han, 1703.06994]

Recall world avg 2014: $M_t = 173.34 \pm 0.76 \text{ GeV}$

- Full D0 combination of Run1 0.1 fb⁻¹and Run2 9.7 fb⁻¹results
- Systematic uncertainties and correlations among channels have been taken into account

	D0 combined values (GeV)
m_t	174.95
In situ light-jet calibration	0.41
Response to b , q , and g jets	0.16
Model for b jets	0.09
Light-jet response	0.21
Out-of-cone correction	< 0.01
Offset	< 0.01
Jet modeling	0.07
Multiple interaction model	0.06
b tag modeling	0.10
Lepton modeling	0.01
Signal modeling	0.35
Background from theory	0.06
Background based on data	0.09
Calibration method	0.07
Systematic uncertainty	0.64
Statistical uncertainty	0.40
Total uncertainty	0.75

$174.95\pm0.75\,GeV$

Outline

Resonances in VH (W', Z') [talk by Li]

NewResults!VH, all hadronic, CMS

- * Excluded HVT Model B(A) for mass regions 1.0-2.54(2.46) and 2.76(2.82)-3.3(3.1) TeV for WH, and 1.0-2.41(2.31) TeV for ZH.
- * The excess observed by ATLAS with a local significance of 3.3 σ at ~3.0 TeV is not observed at CMS.

Summary

- Many interesting new results and nice presentations
- Unique atmosphere, promotes interaction between exp and th
- Precision Higgs physics is now an established, flourishing field. I am eagerly awaiting for new Run-2 results (and for the HL-LHC!)
- LHC becoming competitive with Tevatron for Top and W mass measurements
- Underfluctuation of juicy, unexplained excesses (3TeV in ZH by ATLAS? not by CMS)
- Check out LHCb for news on flavor anomalies!
- The BSM graveyard meanwhile grows

Thanks!