Parton Distribution Functions, α_s and Heavy-Quark Masses for LHC Run II

Sven-Olaf Moch

Universität Hamburg

LHC Physics Discussion, DESY, Hamburg, June 12, 2017

Parton Distribution Functions, $\alpha_{\,\mathcal{S}}\,$ and Heavy-Quark Masses for LHC Run II – p.1

Based on work done in collaboration with:

- Parton Distribution Functions, α_s and Heavy-Quark Masses for LHC Run II
 S. Alekhin, J. Blümlein, S. M. and R. Plačakytė arXiv:1701.05838
- A Critical Appraisal and Evaluation of Modern PDFs
 A. Accardi, S. Alekhin, J. Blümlein, M.V. Garzelli, K. Lipka, W. Melnitchouk, S. M., J.F. Owens, R. Plačakytė, E. Reya, N. Sato, A. Vogt and O. Zenaiev arXiv:1603.08906

 Iso-spin asymmetry of quark distributions and implications for single top-quark production at the LHC
 S. Alekhin, J. Blümlein, S. M. and R. Plačakytė arXiv:1508.07923

- Determination of Strange Sea Quark Distributions from Fixed-target and Collider Data S. Alekhin, J. Blümlein, L. Caminada, K. Lipka, K. Lohwasser, S. M., R. Petti, and R. Plačakytė arXiv:1404.6469
- Many more papers of ABM and friends ...
 2008 ...

PDF landscape

- Significant number of active groups ABMP16, CJ15, CT14, HERAPDF2.0, JR14, MMHT14, NNPDF3.1
 - PDFs accurate to NNLO in QCD, except for CJ15 (NLO)
 - different choices of data sets
 - different fitting procedures ($\Delta \chi^2$ criterium)

PDF sets	$\Delta \chi^2$ criterion	data sets used in analysis
ABMP16 arXiv:1701.05838	1	incl. DIS, DIS charm, DY, $t\bar{t}$, single t
CJ15 arXiv:1602.03154	1	incl. DIS, DY (incl. $p\bar{p} \rightarrow W^{\pm}X$), $p\bar{p}$ jets, γ +jet
CT14 arXiv:1506.07443	100	incl. DIS, DIS charm, DY, $p\bar{p}$ jets, pp jets
HERAPDF2.0 arXiv:1506.06042	1	incl. DIS, DIS charm, DIS jets
JR14 arXiv:1403.1852	1	incl. DIS, DIS charm, DY, $p\bar{p}$ jets, DIS jets
MMHT14 arXiv:1510.02332	2.3 42.3 (dynamical)	incl. DIS, DIS charm, DY, $p\bar{p}$ jets, pp jets, $t\bar{t}$
NNPDF3.1 arXiv:1706.00428	n.a.	incl. DIS, DIS charm, DY, $p\bar{p}$ jets, pp jets, $t\bar{t}$, W + charm, Zp_T

Recommendations (I)

PDF4LHC recommendations for LHC Run II

- Recommendations by CT14, MMHT14, NNPDF3.0
- PDFs averaged in set PDF4LHC15

arXiv:1510.03865v2 [hep-ph] 12 Nov 2015

to be used for Higgs cross sections, in seaches, for PDF uncertainties and for Monte Carlo simulations

> Feltesse⁶, Stefano Forte², Jun Gao⁷, Sasha Glazov⁸, Joey Huston⁹, Zahari Kassabov^{2,10}, Ronan McNulty¹¹, Andreas Morsch⁴, Pavel Nadolsky¹², Voica Radescu¹³, Juan Rojo¹⁴ and Robert Thorne¹. ¹Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK. ² TIF Lab, Dipartimento di Fisica, Università di Milano and INFN, Sezione di Milano, Via Celoria 16, I-20133 Milano, Italy ³ Particle Physics, Department of Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, UK. ⁴PH Department, CERN, CH-1211 Geneva 23, Switzerland ⁵Antwerp University, B2610 Wilrijk, Belgium ⁶ CEA, DSM/IRFU, CE-Saclay, Gif-sur-Yvette, France ⁷ High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, U.S.A. ⁸ Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85. D-22607 Hamburg, Germany. ⁹ Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 U.S.A. ¹⁰ Dipartimento di Fisica, Università di Torino and INFN, Sezione di Torino, Via Pietro Giuria 1, I-10125 Torino, Italy ¹¹ School of Physics, University College Dublin Science Centre North, UCD Belfeld, Dublin 4, Ireland ¹² Department of Physics, Southern Methodist University, Dallas, TX 75275-0181, U.S.A. ¹³ Physikalisches Institut, Universität Heidelberg, Heidelberg, Germany. ¹⁴ Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, University of Oxford, OX1 3NP Oxford, UK

PDF4LHC recommendations for LHC Run II

Jon Butterworth¹, Stefano Carrazza^{2,4}, Amanda Cooper-Sarkar³, Albert De Roeck^{4,5}, Joël

Parton Distribution Functions, α_{S} and Heavy-Quark Masses for LHC Run II – p.4

Recommendations (II)

Recommendations for PDF usage in LHC predictions

- Shortcomings in PDF4LHC recommendations addressed
- Recommendations by ABMP16, CJ15, HERAPDF2.0, JR14

Recommendations for PDF usage in LHC predictions

A. Accardi^{a,b}, S. Alekhin^{c,d}, J. Blümlein^e, M.V. Garzelli^c, K. Lipka^f,
W. Melnitchouk^b, S. Moch^c, R. Plačakytė^f, J.F. Owens^g, E. Reya^h, N. Sato^b, A. Vogtⁱ and O. Zenaiev^f

> ^a Hampton University, Hampton, VA 23668, USA
> ^b Jefferson Lab, Newport News, VA 23606, USA
> ^c II. Institut für Theoretische Physik, Universität Hamburg Luruper Chaussee 149, D–22761 Hamburg, Germany
> ^d Institute for High Energy Physics
> 142281 Protvino, Moscow region, Russia
> ^e Deutsches Elektronensynchrotron DESY Platanenallee 6, D–15738 Zeuthen, Germany
> ^f Deutsches Elektronensynchrotron DESY Notkestraße 85, D–22607 Hamburg, Germany
> ^g Florida State University, Tallahassee, FL 32306, USA
> ^h Institut für Physik, Technische Universität Dortmund D–44221 Dortmund, Germany
> ⁱ Department of Mathematical Sciences, University of Liverpool Liverpool L69 3BX, United Kingdom Parton Distribution Functions, α_S and Heavy-Quark Masses for LHC Run II – p.5

arXiv:1603.08906v1 [hep-ph] 29 Mar 2016

Recommendations (II)

Recommendations for PDF usage in LHC predictions

- Shortcomings in PDF4LHC recommendations addressed
- Recommendations by ABMP16, CJ15, HERAPDF2.0, JR14

(i) Precision theory predictions

Recommendation: Use the individual PDF sets ABMP16, CJ15, CT14, HERAPDF2.0, JR14, MMHT14, NNPDF3.0 (or as many as possible), together with the respective uncertainties for the chosen PDF set, the strong coupling $\alpha_s(M_Z)$ and the heavy quark masses m_c , m_b and m_t .

Recommendations (II)

Recommendations for PDF usage in LHC predictions

- Shortcomings in PDF4LHC recommendations addressed
- Recommendations by ABMP16, CJ15, HERAPDF2.0, JR14

(i) Precision theory predictions

Recommendation: Use the individual PDF sets ABMP16, CJ15, CT14, HERAPDF2.0, JR14, MMHT14, NNPDF3.0 (or as many as possible), together with the respective uncertainties for the chosen PDF set, the strong coupling $\alpha_s(M_Z)$ and the heavy quark masses m_c , m_b and m_t .

(ii) Other theory predictions

Recommendation: Use any one of the PDF sets listed in LHAPDF(v6).

QCD factorization

- Factorization at scale μ
 - separation of sensitivity to dynamics from long and short distances
- Hard parton cross section $\hat{\sigma}_{ij \to X}$ calculable in perturbation theory
 - cross section $\hat{\sigma}_{ij \to k}$ for parton types i, j and hadronic final state X
- Parton distribution functions f_i , strong coupling α_s , particle masses m_X
 - known from global fits to exp. data, lattice computations, ...

The ABMP16 PDF fit

Data sets considered in ABMP16 analysis

- Analysis of world data for deep-inelastic scattering and fixed-target data for Drell-Yan process
 - inclusive DIS data HERA, BCDMS, NMC, SLAC (NDP = 2155)
 - DIS heavy-quark production data HERA, CCFR, Chorus, NOMAD, NuTeV
 - Drell-Yan data (fixed target) E-605, E-866

• Tevatron & LHC data for W^{\pm} - and Z-boson production D0, ATLAS, CMS, LHCb (NDP = 172)

Top-quark production D0, ATLAS, CMS, LHCb

Iterative cycle of PDF fits

- i) check of compatibility of new data set with available world data
- ii) study of potential constraints due to addition of new data set to fit
- iii) perform high precision measurement of parton distributions, strong coupling $\alpha_s(M_Z)$ and heavy quark masses

(NDP = 313)

(NDP = 158)

(NDP = 36)

Theory considerations in PDF fits

Theory considerations in ABMP16

- Strictly NNLO QCD for determination of PDFs and α_s
- Consistent scheme for treatment of heavy quarks
 - $\overline{\mathrm{MS}}$ -scheme for quark masses and α_s
 - fixed-flavor number scheme for $n_f = 3, 4, 5$
- Consistent theory description for consistent data sets
 - Iow scale DIS data with account of higher twist
- Full account of error correlations

Interplay with perturbation theory

- Accuracy of determination driven by precision of theory predictions
- PDF parameters, α_s , m_c , m_b and m_t sensitive to
 - radiative corrections at higher orders
 - chosen scheme (e.g. $(\overline{MS} \text{ scheme})$
 - renormalization and factorization scales μ_R , μ_F

• ..

ABMP16 PDF ansatz

- PDFs parameterization at scale $\mu_0 = 3 \text{GeV}$ in scheme with $n_f = 3$ Alekhin, Blümlein, S.M., Placakyte '17
 - ansatz for valence-/sea-quarks, gluon

$$\begin{aligned} xq_v(x,\mu_0^2) &= \frac{2\delta_{qu} + \delta_{qd}}{N_q^v} (1-x)^{b_q} x^{a_q P_{qv}(x)} \\ xq_s(x,\mu_0^2) &= x\bar{q}_s(x,\mu_0^2) = A_{qs} (1-x)^{b_{qs}} x^{a_{qs} P_{qs}(x)} \\ xg(x,\mu_0^2) &= A_g (1-x)^{b_g} x^{a_g P_g(x)} \end{aligned}$$

- strange quark is taken in charge-symmetric form
- function $P_p(x)$

$$P_p(x) = (1 + \gamma_{-1,p} \ln x) \left(1 + \gamma_{1,p} x + \gamma_{2,p} x^2 + \gamma_{3,p} x^3 \right) ,$$

- 29 parameters in fit including $\alpha_s^{(n_f=3)}(\mu_0=3 \text{ GeV}), m_c, m_b$ and m_t
- simultaneous fit of higher twist parameters (twist-4)
- Ansatz provides sufficient flexibility; no additional terms required to improve the quality of fit

Quality of fit

Statistical tests

- Goodness-of-fit estimator
 - χ^2 values compared to number of data points (typically a few thousand in global fit)

Covariance matrix

- Positive-definite covariance matrix
 - correlations for fit parameters of ABMP16 PDFs

		a _u	b _u	$\gamma_{1,u}$	$\gamma_{2,u}$	<i>γ</i> _{3,<i>u</i>}	a _d	b_d	γ _{1,d}	$\gamma_{2,d}$	γ _{3,d}		a _{us}	b _{us}	$\gamma_{-1,us}$	$\gamma_{1,us}$	A_{us}	a _{ds}	b _{bs}	$\gamma_{1,ds}$	A_{ds}	a _{ss}		b _{ss}	A_{ss}	a_g	b_g	$\gamma_{1,g}$	$\alpha_s^{(n_f=3)}(\mu_0)$	$m_c(m_c)$	$m_b(m_b)$	$m_t(m_t)$
Ī	au	1.0	0.7617	0.9372	- 0.5078	0.4839	0.4069	0.3591	0.4344	- 0.3475	0.0001	a_u	- 0.0683	- 0.3508	0.2296	- 0.4853	0.0506	- 0.0759	0.0452	- 0.0492	- 0.1980	- 0.2034	au	- 0.1186	- 0.1013	0.0046	0.2662	0.2008	0.1083	- 0.0006	0.0661	- 0.1339
	b_u	0.7617	1.0	0.6124	- 0.1533	- 0.0346	0.3596	0.2958	0.3748	- 0.2748	0.0001	b_u	- 0.0081	- 0.3089	0.1387	- 0.4119	0.0807	- 0.0443	- 0.0197	- 0.0809	- 0.1262	- 0.1285	b_u	- 0.0480	- 0.0411	- 0.0374	0.3141	0.2274	- 0.0607	0.0170	0.0554	- 0.2170
	γ1, <i>u</i>	0.9372	0.6124	1.0	- 0.7526	0.7154	0.2231	0.2441	0.2812	- 0.2606	0.0001	γ _{1,u}	- 0.2094	- 0.3462	0.3367	- 0.3844	- 0.0949	- 0.0951	0.0345	0.0101	- 0.2349	- 0.2362	γ1, <i>u</i>	- 0.1532	- 0.1458	0.1109	0.1579	0.0706	0.0848	- 0.0104	0.0605	- 0.0816
	γ2,и	- 0.5078	- 0.1533	- 0.7526	1.0	- 0.9409	0.2779	0.2276	0.2266	- 0.1860	0.0	γ2,и	0.3881	0.0906	- 0.4043	- 0.0365	0.3198	0.0263	- 0.0589	- 0.1791	0.1526	0.2328	γ2,и	0.1549	0.1802	- 0.1934	- 0.0050	0.0876	- 0.0250	0.0206 -	0.0367	0.0081
	γз,и	0.4839	- 0.0346	0.7154	- 0.9409	1.0	- 0.1738	- 0.1829	- 0.1327	0.1488	0.0	γз,и	- 0.3206	- 0.0537	0.3474	0.0064	- 0.2560	- 0.0382	0.0683	0.1309	- 0.1428	- 0.2080	γз,и	- 0.1536	- 0.1625	0.1653	- 0.0207	- 0.0835	0.0765	- 0.0201	0.0287	0.0250
	a_d	0.4069	0.3596	0.2231	0.2779	- 0.1738	1.0	0.7209	0.9697	- 0.6529	0.0001	a_d	0.2266	- 0.1045	- 0.1171	- 0.4380	0.2527	- 0.2565	- 0.2084	- 0.5576	- 0.1113	0.0960	a_d	0.0486	0.1216	- 0.0288	0.0973	0.0919	0.0763	- 0.0123 -	0.0116	- 0.0616
	b_d	0.3591	0.2958	0.2441	0.2276	- 0.1829	0.7209	1.0	0.7681	- 0.9786	- 0.0001	b_d	0.1502	- 0.2000	- 0.1127	- 0.3592	0.1648	- 0.2541	0.0190	- 0.2029	- 0.2167	0.1596	b_d	0.1508	0.1678	- 0.0122	0.0870	0.0574	- 0.0306	- 0.0161	0.0029	- 0.0813
	$\gamma_{1,d}$	0.4344	0.3748	0.2812	0.2266	- 0.1327	0.9697	0.7681	1.0	- 0.7454	0.0002	$\gamma_{1,d}$	0.2000	- 0.2241	- 0.0810	- 0.4957	0.2350	- 0.2666	- 0.1841	- 0.4584	- 0.1739	0.0661	$\gamma_{1,d}$	0.0267	0.0924	0.0053	0.0646	0.0493	0.0725	- 0.0114 -	0.0074	- 0.0491
	$\gamma_{2,d}$	- 0.3475	- 0.2748	- 0.2606	- 0.1860	0.1488	- 0.6529	- 0.9786	- 0.7454	1.0	- 0.0002	$\gamma_{2,d}$	- 0.1293	0.2798	0.0767	0.3771	- 0.1509	0.2380	- 0.0522	0.0946	0.2407	- 0.1054	$\gamma_{2,d}$	- 0.1161	- 0.1196	0.0059	- 0.0666	- 0.0364	0.0243	0.0108 -	0.0051	0.0736
	$\gamma_{3,d}$	0.0001	0.0001	0.0001	0.0	0.0	0.0001	- 0.0001	0.0002	- 0.0002	1.0	γ3,d	0.0	0.0	0.0	- 0.0001	0.0	0.0	0.0	0.0	0.0	0.0	γ3,d	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	aus	- 0.0683	- 0.0081	- 0.2094	0.3881	- 0.3206	0.2266	0.1502	0.2000	- 0.1293	0.0	aus	1.0	- 0.3156	- 0.8947	- 0.5310	0.9719	0.2849	0.0241	- 0.0470	0.2983	0.4131	a_{us}	0.2197	0.3627	- 0.2570	- 0.1419	- 0.0241	0.0954	0.0704 -	0.0183	0.0641
	bus	- 0.3508	- 0.3089	- 0.3462	0.0906	- 0.0537	- 0.1045	- 0.2000	- 0.2241	0.2798	0.0	bus	- 0.3156	1.0	0.1372	0.8258	- 0.3995	0.0467	- 0.0221	- 0.1190	0.1856	0.0291	b_{us}	0.0643	0.0261	0.0001	0.1266	0.0332	- 0.2866	- 0.0093 -	0.0132	- 0.1841
	$\gamma_{-1,us}$	0.2296	0.1387	0.3367	- 0.4043	0.3474	- 0.1171	- 0.1127	- 0.0810	0.0767	0.0	$\gamma_{-1,us}$	- 0.8947	0.1372	1.0	0.2611	- 0.7829	- 0.1695	0.0156	0.0501	- 0.2117	- 0.7191	$\gamma_{-1,us}$	- 0.4479	- 0.6319	0.2197	0.0694	- 0.0226	- 0.0341	- 0.0034	0.0044	- 0.0408
	$\gamma_{1,us}$	- 0.4853	- 0.4119	- 0.3844	- 0.0365	0.0064	- 0.4380	- 0.3592	- 0.4957	0.3771	- 0.0001	$\gamma_{1,us}$	- 0.5310	0.8258	0.2611	1.0	- 0.6479	0.0086	0.0076	0.1460	0.0781	- 0.0010	$\gamma_{1,us}$	0.1286	0.0102	0.0039	0.2648	0.1296	- 0.3493	- 0.0462	0.0209	- 0.2635
	A_{us}	0.0506	0.0807	- 0.0949	0.3198	- 0.2560	0.2527	0.1648	0.2350	- 0.1509	0.0	A_{us}	0.9719	- 0.3995	- 0.7829	- 0.6479	1.0	0.2983	0.0515	- 0.0404	0.3055	0.2811	A_{us}	0.1193	0.2412	- 0.2493	- 0.1715	- 0.0489	0.1110	0.1182 -	0.0298	0.0755
	ads	- 0.0759	- 0.0443	- 0.0951	0.0263	- 0.0382	- 0.2565	- 0.2541	- 0.2666	0.2380	0.0	a_{ds}	0.2849	0.0467	- 0.1695	0.0086	0.2983	1.0	- 0.1608	0.0719	0.9152	- 0.2941	a_{ds}	- 0.1579	- 0.2688	- 0.2190	- 0.0515	- 0.0137	- 0.0604	0.0849 -	0.0006	- 0.0573
	b_{bs}	0.0452	- 0.0197	0.0345	- 0.0589	0.0683	- 0.2084	0.0190	- 0.1841	- 0.0522	0.0	b _{bs}	0.0241	- 0.0221	0.0156	0.0076	0.0515	- 0.1608	1.0	0.7834	- 0.3022	- 0.0390	b_{bs}	- 0.0260	- 0.0180	- 0.0454	0.0917	0.0503	- 0.1265	0.0547	0.0332	- 0.1067
	$\gamma_{1,ds}$	- 0.0492	- 0.0809	0.0101	- 0.1791	0.1309	- 0.5576	- 0.2029	- 0.4584	0.0946	0.0	$\gamma_{1,ds}$	- 0.0470	- 0.1190	0.0501	0.1460	- 0.0404	0.0719	0.7834	1.0	- 0.1838	- 0.1373	$\gamma_{1,ds}$	0.0169	- 0.0960	- 0.1031	0.2130	0.1409	- 0.1811	0.0413	0.0695	- 0.2003
	A_{ds}	- 0.1980	- 0.1262	- 0.2349	0.1526	- 0.1428	- 0.1113	- 0.2167	- 0.1739	0.2407	0.0	A_{ds}	0.2983	0.1856	- 0.2117	0.0781	0.3055	0.9152	- 0.3022	- 0.1838	1.0	- 0.1833	A_{ds}	- 0.0896	- 0.1797	- 0.2571	- 0.0469	0.0022	- 0.1330	0.1193 -	0.0432	- 0.0869
	ass	- 0.2034	- 0.1285	- 0.2362	0.2328	- 0.2080	0.0960	0.1596	0.0661	- 0.1054	0.0	a _{ss}	0.4131	0.0291	- 0.7191	- 0.0010	0.2811	- 0.2941	- 0.0390	- 0.1373	- 0.1833	1.0	ass	0.6522	0.9280	0.0626	- 0.0092	- 0.0279	- 0.0841	- 0.0728 -	0.0159	0.0169
	b_{ss}	- 0.1186	- 0.0480	- 0.1532	0.1549	- 0.1536	0.0486	0.1508	0.0267	- 0.1161	0.0	b _{ss}	0.2197	0.0643	- 0.4479	0.1286	0.1193	- 0.1579	- 0.0260	0.0169	- 0.0896	0.6522	b_{ss}	1.0	0.6427	- 0.0179	0.1967	0.1164	- 0.2390	- 0.0965	0.0169	- 0.1675
	A_{ss}	- 0.1013	- 0.0411	- 0.1458	0.1802	- 0.1625	0.1216	0.1678	0.0924	- 0.1196	0.0	A_{ss}	0.3627	0.0261	- 0.6319	0.0102	0.2412	- 0.2688	- 0.0180	- 0.0960	- 0.1797	0.9280	A_{ss}	0.6427	1.0	- 0.0211	0.1403	0.0997	- 0.1385	0.0216	0.0072	- 0.1109
	a_g	0.0046	- 0.0374	0.1109	- 0.1934	0.1653	- 0.0288	- 0.0122	0.0053	0.0059	0.0	a_g	- 0.2570	0.0001	0.2196	0.0039	- 0.2493	- 0.2190	- 0.0454	- 0.1031	- 0.2571	0.0626	a_g	- 0.0179	- 0.0211	1.0	- 0.5279	- 0.8046	0.1838	- 0.2829	0.0076	0.3310
	b_g	0.2662	0.3141	0.1579	- 0.0050	- 0.0207	0.0973	0.0870	0.0646	- 0.0666	0.0	b_g	- 0.1419	0.1266	0.0694	0.2648	- 0.1715	- 0.0515	0.0917	0.2130	- 0.0469	- 0.0092	b_g	0.1967	0.1403	- 0.5279	1.0	0.8837	- 0.5124	0.1438	0.1255	- 0.7275
	$\gamma_{1,g}$	0.2008	0.2274	0.0706	0.0876	- 0.0835	0.0919	0.0574	0.0493	- 0.0364	0.0	$\gamma_{1,g}$	- 0.0241	0.0332	- 0.0226	0.1296	- 0.0489	- 0.0137	0.0503	0.1409	0.0022	- 0.0279	$\gamma_{1,g}$	0.1164	0.0997	- 0.8046	0.8837	1.0	- 0.2511	0.1829	0.0814	- 0.5180
	$\alpha_s^{(n_f=5)}(\mu_0)$	0.1083	- 0.0607	0.0848	- 0.0250	0.0765	0.0763	- 0.0306	0.0725	0.0243	0.0	$\alpha_s^{(n_f=5)}(\mu_0)$	0.0954	- 0.2866	- 0.0341	- 0.3493	0.1110	- 0.0604	- 0.1265	- 0.1811	- 0.1330	- 0.0841	$\alpha_{s}^{(n_{f}=5)}(\mu_{0})$	- 0.2390	- 0.1385	0.1838	- 0.5124	- 0.2511	1.0	- 0.1048	0.0423	0.6924
	$m_c(m_c)$	- 0.0006	0.0170	- 0.0104	0.0206	- 0.0201	- 0.0123	- 0.0161	- 0.0114	0.0108	0.0	$m_c(m_c)$	0.0704	- 0.0093	- 0.0033	- 0.0462	0.1182	0.0849	0.0547	0.0413	0.1193	- 0.0728	$m_c(m_c)$	- 0.0965	0.0216	- 0.2829	0.1438	0.1829	- 0.1048	1.0	0.0328	- 0.1577
	$m_b(m_b)$	0.0661	0.0554	0.0605	- 0.0367	0.0287	- 0.0116	0.0029	- 0.0074	- 0.0051	0.0	$m_b(m_b)$	- 0.0183	- 0.0132	0.0044	0.0209	- 0.0298	- 0.0006	0.0332	0.0695	- 0.0432	- 0.0159	$m_b(m_b)$	0.0169	0.0072	0.0076	0.1255	0.0814	0.0423	0.0328	1.0	- 0.0900
	$m_t(m_t)$	- 0.1339	- 0.2170	- 0.0816	0.0081	0.0250	- 0.0616	- 0.0813	- 0.0491	0.0736	0.0	$m_t(m_t)$	0.0641	- 0.1841	- 0.0408	- 0.2635	0.0755	- 0.0573	- 0.1067	- 0.2003	- 0.0869	0.0169	$m_t(m_t)$	- 0.1675	- 0.1109	0.3310	- 0.7275	- 0.5180	0.6924	- 0.1577 -	0.0900	1.0

1.0

Results for parton distributions (I)

- PDFs with 1σ uncertainty bands; compare ABMP16, CT14, MMHT14 NNPDF3.0
- Gluon g(x)

Results for parton distributions (II)

- PDFs with 1σ uncertainty bands; compare ABMP16, CT14, MMHT14 NNPDF3.0
- Light valence quarks u(x), d(x)

Parton Distribution Functions, $\alpha_{\,\mathcal{S}}\,$ and Heavy-Quark Masses for LHC Run II – p.12

Results for parton distributions (III)

- PDFs with 1σ uncertainty bands; compare ABMP16, CT14, MMHT14 NNPDF3.0
- Sea quarks $\overline{u}(x) + \overline{d}(x)$

Parton Distribution Functions, $\alpha_{\,\mathcal{S}}$ and Heavy-Quark Masses for LHC Run II – p.13

Results for parton distributions (IV)

- PDFs with 1σ uncertainty bands; compare ABMP16, CT14, MMHT14 NNPDF3.0
- Iso-spin asymmetry $x(\overline{d}(x) \overline{u}(x))$; ratio d(x)/u(x); strange s(x)

Parton Distribution Functions, $\alpha_{\,\mathcal{S}}\,$ and Heavy-Quark Masses for LHC Run II – p.14

W- and Z-boson cross sections

- High precision data from LHC ATLAS, CMS, LHCb and Tevatron D0
 - differential distributions extend to forward region
 - sensitivity to light quark flavors at $x \simeq 10^{-4}$
 - statistically significant: NDP = 172 in ABMP16
- ATLAS measurement at $\sqrt{s} = 13$ TeV from arXiv:1603.09222

 Spread in predictions from different PDFs significantly larger than experimental precision

Muon charge asymmetry from LHC

- comparison of ABM12, ABMP15 and ABMP16 fits
- Problematic data point at $\eta_{\mu} = 3.375$ for $\sqrt{s} = 7$ TeV in LHCb data are omitted in fit

W^{\pm} -boson production from LHC (I)

• CMS data on cross section of inclusive W^{\pm} -boson production at $\sqrt{s} = 8 \text{ TeV}$

• channel $W^{\pm} \rightarrow \mu^{\pm} \nu$

W^{\pm} -boson production from LHC (II)

- LHCb data on cross section of inclusive W^{\pm} -boson production at $\sqrt{s} = 7$ TeV and $\sqrt{s} = 8$ TeV
 - channel $W^{\pm} \rightarrow \mu^{\pm} \nu$
- Points at $\eta_{\mu} = 2.125$ for $\sqrt{s} = 8$ TeV are not used in fit

W^{\pm} -boson production from LHC (III)

• LHCb data on cross section of inclusive W^{\pm} -boson production at $\sqrt{s} = 8 \text{ TeV}$

• channel $W^{\pm}
ightarrow e^{\pm} \nu$

Z-boson production from LHC

- LHCb data for $pp \rightarrow Z + X \rightarrow l\bar{l}$ at $\sqrt{s} = 8$ TeV and $\sqrt{s} = 13$ TeV
 - channels $Z \to e^+e^-$ and $Z \to \mu^+\mu^-$

 $\alpha_s(M_Z)$ in PDFs

PDF sets	$\alpha_s(M_Z)$	method of determination
ABMP16 Alekhin, Blümlein, S.M., Placakyte '17	0.1147 ± 0.0008	fit at NNLO
CJ15 Accardi, Brady, Melnitchouk et al. '16	0.118 ± 0.002	fit at NLO
CT14 Dulat et al. '15	0.118	assumed at NNLO
HERAPDF2.0 H1+Zeus Coll.	$0.1183 \begin{array}{c} +0.0040 \\ -0.0034 \end{array}$	fit at NLO
JR14 Jimenez-Delgado, Reya '14	0.1136 ± 0.0004	dynamical fit at NNLO
	0.1162 ± 0.0006	standard fit at NNLO
MMHT14 Martin, Motylinski, Harland-Lang, Thorne '14	0.118	assumed at NNLO
	0.1172 ± 0.0013	best fit at NNLO
NNPDF3.1 Ball et al. '17	0.118	assumed at NNLO
PDF4LHC15 Butterworth et al. '15	0.118	assumed at NLO
	0.118	assumed at NNLO

- Values of $\alpha_s(M_Z)$ often assumed and not fitted (no correlations)
- Large spread of fitted values at NNLO: $\alpha_s(M_Z) = 0.1136...0.1172$
- PDF4LHC: order independent recommendation
 - use $\alpha_s(M_Z) = 0.118$ at NLO and NNLO

World DIS data and value of α_s

- Value of $\alpha_s(M_Z) = 0.1147 \pm 0.0008$ is lower than PDG average
 - value of $\alpha_s(M_Z)$ is pulled up by SLAC and NMC and pulled down by BCDMS and HERA data
- Only $\alpha_s(M_Z)$ preferred by SLAC data is compatible with PDG average (provided higher twist terms are accounted for)
- Update of the α_s determination with combined data HERA I+II
 - value of $\alpha_s(M_Z)$ increases by 1σ

Data on top-quark cross sections

• Pulls for $t\bar{t}$ - and single-t inclusive cross sections

Fit quality

- Goodness-of-fit estimator χ^2 for extracted $\alpha_s(M_Z)$ and $m_t(m_t)$ values
 - fit result $m_t(m_t) = 160.86$ GeV corresponds to $m_t(m_t) = 170.37$ GeV
 - χ^2 of global fit with NDP = 2834
 - data on top-quark production with NDP = 36 D0, ATLAS, CMS, LHCb

Correlations

- Cross section for $t\bar{t}$ -production with parametric dependence $\sigma_{t\bar{t}} \sim \alpha_s^2 m_t^2 g(x) \otimes g(x)$
- Correlations between gluon PDF g(x), $\alpha_s(M_Z)$ and $m_t(m_t)$
 - PDFs and $\alpha_s(M_Z)$ already well constrained by global fit

Summary

- Precision determination of non-perturbative parameters is essential
 - parton content of proton (PDFs), strong coupling constant $\alpha_s(M_Z)$, quark masses m_c , m_b , m_t
 - correlations are important and need to be taken into account
- LHC data for W^{\pm} and Z-boson production provides valuable information on light flavor PDFs u, d and s over wide range of x
- Values of $\alpha_s(M_Z)$ at NNLO from measurements at colliders lower than world average
 - $\alpha_s(M_Z) = 0.118$ at NNLO not preferred by data
 - data analysis with fixed value of $\alpha_s(M_Z)$ lacks correlation with parameters of PDF fits
- PDF4LHC recommendations introduce bias and inflated uncertainties
 - very difficult to quantify potential discrepancies between individual PDF sets