

LHC Physics Discussion DESY, June 2017

New results from the CMS Standard Model group

Paolo Gunnellini

Deutsches Elektronen-Synchrotron, Hamburg

2017 means LHC restarting..new data, commissioning, understanding the detector..

..but also data analysis and results with previous data!

Green points (@13 TeV) start to appear for the public :)

...and even previously unmeasured channels...

Paolo Gunnellini

HUGE amount of results already published..

.. impossible to cover everything!

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP

- Introduction: Standard Model
- Jet and QCD measurements
- Measurements of (single) weak boson production
- Measurements of diboson production
- Anomalous gauge coupling measurements
- Summary

Why standard model physics?

- Improve PDFs, measure quantities with high precision
- Search for deviations from Standard Model
- Establish understanding of backgrounds for new physics searches

Probes		Probes
Jets inclusive dijets multijets jet sub-structure HE production	Physics Non-perturbative QCD Perturbative QCD	W/Z Bosons inclusive V+jets Ratio W/Z + jets W and Z + HF
Photons	Proton PDF Valence, strange quarks Gluons	Top quark
diphotons γ + jets ν + HF	EWK corrections	Dibosons ww, wz, zz, wγ, zγ
Hadrons	Electroweak parameters	Higgs

Joao Guimares DIS 2017

It is not easy nowadays!

Event display from CMS with 86 reconstructed vertices!

Obvious need for some methods of PU mitigation/subtraction \rightarrow e.g. JETS: charged-hadron subtraction (removal of charged particles coming from vertices different wrt the jet one).

CMS-DP-2017/001

Inclusive jet measurements

Inclusive jet cross section at 13 TeV

Unfolded results compared to predictions from:

- NLOJet++ corrected for non-perturbative effects
- POWHEG NLO dijet matrix element + PYTHIA8 underlying event simulation
- PYTHIA 8 and HERWIG++ LO predictions For the first time HF region included!

EPJC 76 (2016)451

Inclusive jet cross section at 13 TeV: central region

R = 0.4 R = 0.7

Jets with small cone size might miss some products of the evolution of the initial parton

Predictions not including parton shower do not describe small cone-size measurements

Inclusive jet cross section at 13 TeV: central region

Inclusion of parton-shower effects solves the issue!

Multijet scenarios

Increasing the number of jets in the event...

For more than one jet in the event, one can measure the azimuthal correlation between the two leading jets

At LO in pQCD the two final-state partons are produced back-to-back in transverse plane.

The production of a third jet leads to a decorrelation in azimuthal angle.

If more than three jets are produced, the azimuthal angle between the two leading jets can approach zero.

 $0 < \Delta \phi_{dijet} \ll \pi$

CMS-SMP-16-014

Increasing the number of jets in the event...

Paolo Gunnellini

Triple differential dijet cross sections at 8 TeV

High-x gluon distr. is very sensitive to dijet cross sections and might add infos with respect to inclusive jets measurements

Paolo Gunnellini

Weak boson production cross section measurements

Z- and W-boson production cross sections at 13 TeV

Inclusive cross sections with early data at 13 TeV

Both muonic and electronic final states are considered for the two measurements

Available predictions reproduce the values Compatibility between weak boson decay modes to unity \rightarrow decay universality "confirmed".

Z-boson differential cross sections at 13 TeV (I)

Going differential..

as a function of the dimuon invariant mass and ϕ_{μ}^{*}

Paolo Gunnellini

 ϕ_{η}

Z-boson differential cross sections at 13 TeV (II)

Going differential..as a function of number of additional jets, leading jet p_T and third jet p_T .. (jets in the central region with $p_T > 30$ GeV)

Predictions from MC generators at NLO (up to 2 partons) + PS describe very well the measurements..the agreement becomes worse when looking at jets simulated at LO CMS-SMP-15-010

Paolo Gunnellini

DESY SM physics discussion

June 2017

Diboson production cross section measurements

EWK same-sign WW cross section associated with two jets

Events are selected by requiring exactly two leptons of the same charge, E_T^{miss} , and two jets with large rapidity separation and large dijet mass

 σ_{fid} (W[±]W[±]jj) = 3.83 ± 0.66 (stat) ± 0.35 (syst) fb First evidence of this process! (Observed significance: 5.5 σ)

Limits on anomalous quartic vector-boson interactions and production of doubly charged Higgs bosons could be extracted as well

CMS-SMP-17-004

ZZ and WW cross section production

 $\sigma(pp \rightarrow ZZ) = 17.8 \pm 0.6 \text{ (stat)} \stackrel{+0.7}{_{-0.6}} \text{ (syst)} \pm 0.4 \text{ (theo)} \pm 0.5 \text{ (lumi) pb}$ $\sigma(pp \rightarrow WZ) = 40.9 \pm 3.4 \text{ (stat)} \stackrel{+3.1}{_{-3.3}} \text{ (syst)} \pm 0.4 \text{ (theo)} \pm 1.3 \text{ (lumi) pb}$

CMS-SMP-16-017

SM predictions reproduce well the measured cross sections

Anomalous gauge coupling measurements

March 2017	Central	ATLAS				
	Fit Value	LEP	Channel	Limits	∫ <i>L</i> dt	√s
Δκ			Wγ	[-4.1e-01, 4.6e-01]	4.6 fb ⁻¹	7 TeV
Διαγ			Wγ	[-3.8e-01, 2.9e-01]	5.0 fb ⁻¹	7 TeV
		⊢−−−− 1	ww	[-1.2e-01, 1.7e-01]	20.3 fb ⁻¹	8 TeV
			ww	[-2.1e-01, 2.2e-01]	4.9 fb ⁻¹	7 TeV
		⊢ •−−1	ww	[-1.3e-01, 9.5e-02]	19.4 fb ⁻¹	8 TeV
		H	wv	[-2.1e-01, 2.2e-01]	4.6 fb ⁻¹	7 TeV
		HH	wv	[-1.1e-01, 1.4e-01]	5.0 fb ⁻¹	7 TeV
		—	wv	[-4.4e-02, 6.3e-02]	19 fb ⁻¹	8 TeV
		—	D0 Comb.	[-1.6e-01, 2.5e-01]	8.6 fb ⁻¹	1.96 TeV
		⊢ •−1	LEP Comb	[-9.9e-02, 6.6e-02]	0.7 fb ⁻¹	0.20 TeV
2		H	Wγ	[-6.5e-02, 6.1e-02]	4.6 fb ⁻¹	7 TeV
\mathcal{M}_{γ}		H	Wγ	[-5.0e-02, 3.7e-02]	5.0 fb ⁻¹	7 TeV
		н	ww	[-1.9e-02, 1.9e-02]	20.3 fb ⁻¹	8 TeV
		H	ww	[-4.8e-02, 4.8e-02]	4.9 fb ⁻¹	7 TeV
		H	ww	[-2.4e-02, 2.4e-02]	19.4 fb ⁻¹	8 TeV
		H	wv	[-3.9e-02, 4.0e-02]	4.6 fb ⁻¹	7 TeV
		H	wv	[-3.8e-02, 3.0e-02]	5.0 fb ⁻¹	7 TeV
		н	wv	[-1.1e-02, 1.1e-02]	19 fb ⁻¹	8 TeV
		Heri	D0 Comb.	[-3.6e-02, 4.4e-02]	8.6 fb ⁻¹	1.96 TeV
	1		LEP Comb	[-5.9e-02, 1.7e-02]	0.7 fb ⁻¹	0.20 TeV
	-0.5	0	0.5	1	1.5	
				aTGC Lii	mits @9	5% C.L

Search for anomalous triple gauge coupling

Semileptonic channel

• The CMS Collaboration is producing a wide range of Standard Model results with the available data until now

Summary

- The CMS Collaboration is producing a wide range of Standard Model results with the available data until now
- Jet measurements and associated jet production are used for:
 - understanding QCD dynamics at different x ranges
 - improve modelling of multijet scenarios
 - Image measurement of strong coupling
 - extraction of parton distribution functions

Summary

- The CMS Collaboration is producing a wide range of Standard Model results with the available data until now
- Jet measurements and associated jet production are used for:
 - understanding QCD dynamics at different x ranges
 - Improve modelling of multijet scenarios
 - Image measurement of strong coupling
 - extraction of parton distribution functions
- Available predictions reproduce well the measurement in the weak boson sector, associated jet production and diboson cross sections
- With higher statistics, more and more stringent limits are set for possible deviations from SM

- The CMS Collaboration is producing a wide range of Standard Model results with the available data until now
- Jet measurements and associated jet production are used for:
 - understanding QCD dynamics at different x ranges
 - Improve modelling of multijet scenarios
 - Image measurement of strong coupling
 - extraction of parton distribution functions
- Available predictions reproduce well the measurement in the weak boson sector, associated jet production and diboson cross sections
- With higher statistics, more and more stringent limits are set for possible deviations from SM
- Standard Model measurements and direct searches will play a fundamental role in the search for new physics

Summary

Probes			Probes		
Jets inclusive dijets multijets jet sub-structure HF production		Physics Non-perturbative QCD Perturbative QCD	W/Z Boson inclusive V+jets Ratio W/Z + jet W and Z + HF	I S s	
Photons inclusive		Proton PDF Valence, strange quarks Gluons	Top quark	C .	
diphotons γ + jets γ + HF		EWK corrections	Dibosons ww, wz, zz, wγ	, Ζγ	
Hadrons		Electroweak parameters	Higgs		
			CMS Preliminary		43 pb ⁻¹ (13 TeV)
2.3 fb ⁻¹ (13 TeV)			Uncertainty (lumi)	y (exp., exp. ⊕ theory)	Theory: FEWZ (NNLO), NNPDF3.0 Observation: NNPDF3.0
	٦	FHANKS	W*⊸lî∨ Wi⊸lîv	++-+-+- +++-1	11370 ± 50 _{stat} ± 230 _{spit} ± 550 _{km} pb 11330 ± 300 pb 8580 ± 50 _{stat} ± 160 _{spit} ± 410 _{km} pb 8370 ± 230 pb 19950 ± 770 ± 260 ± 960 pb
WW/WZ Single Top Background uncertainty	FC	DR YOUR	W→h Z→l'î		19700 ± 520 pb 1910 ± 10 _{mat} ± 40 _{mat} ± 90 _{km} pb 1870 ± 50 pb 1.323 ± 0.010 _{mat} ± 0.021 _{mat}
	ΔΤ		W [*] →I [*] v/Z→I [*] I	•	1.354 ± 0.011 5.96 ± 0.04 mm ± 0.10 syst 6.06 ± 0.05 4.50 ± 0.03 ± 0.08
			W → f v / Z → I*f	H•	4.48 ± 0.02

+++++,

, | , | |

2500 3000 3500

Events / (100 GeV) CMS preliminary

10

10

Conta-Fit

1000 1500

M_{wv} (GeV)

W→lv / Z→l*ĺ

0.9

1.2

4.48 ± 0.02 10.46 ± 0.06 ± 0.1

 $10,55 \pm 0.07$

1.1

ratio (exp./th.) of total cross sections and ratios

1.0

The Large Hadron Collider at CERN, Geneva

- 27-km underground ring collider
- Bending magnetic field of 8.4 T
- Proton beams accelerated up to 6.5 TeV

Three years of data taking in Run I: $\sqrt{s} = 7-8$ TeV Run II started

in 2015 $\sqrt{s} = 13 \text{ TeV}$

The Compact Muon Solenoid experiment

- Tracking system for measurement of the momentum of charged particles
- Calorimeter system for measurement of the particle energy
- Muon system for the muon identification

- Length: 21 m
- Diameter: 15 m
- Weight: 12500 ton

Theoretical tools in our hands

- Pure matrix-element (ME) calculations
 - MC integration of cross section & PDF, but no hadronization
- Monte Carlo event generators
 - Combination of ME and parton showers (PS), underlying event and hadronization

Theoretical tools in our hands

Leading order process

Real correction

Virtual correction

- Pure matrix-element (ME) calculations
 - MC integration of cross section & PDF, but no hadronization
- Monte Carlo event generators
 - Combination of ME and parton showers (PS), multiparton interactions (MPI) and hadronization (HAD)

The anomalous gauge coupling terms

	$c_{WWW}/\Lambda^2 [\text{TeV}^{-2}]$	$c_W/\Lambda^2 [\text{TeV}^{-2}]$	$c_B/\Lambda^2 [\text{TeV}^{-2}]$
0	12.0	20.0	60.0
1	12.0	0.0	0.0
2	-12.0	0.0	0.0
3	0.0	20.0	0.0
4	0.0	-20.0	0.0
5	0.0	0.0	60.0
6	0.0	0.0	-60.0
7	-12.0	-20.0	-60.0
8	0.0	0.0	0.0

Table 3: Values of anomalous triple gauge couplings used in the generation

$$\begin{aligned} \mathcal{O}_{WWW} &= \operatorname{Tr}[W_{\mu\nu}W^{\nu\rho}W^{\mu}_{\rho}] \\ \mathcal{O}_{W} &= (D_{\mu}\Phi)^{\dagger}W^{\mu\nu}(D_{\nu}\Phi) \\ \mathcal{O}_{B} &= (D_{\mu}\Phi)^{\dagger}B^{\mu\nu}(D_{\nu}\Phi) \\ \mathcal{O}_{\tilde{W}WW} &= \operatorname{Tr}[\tilde{W}_{\mu\nu}W^{\nu\rho}W^{\mu}_{\rho}] \\ \mathcal{O}_{\tilde{W}} &= (D_{\mu}\Phi)^{\dagger}\tilde{W}^{\mu\nu}(D_{\nu}\Phi) \end{aligned}$$

 \mathcal{O}_{WWW} and $\mathcal{O}_{\tilde{W}}$ do not conserve CP and are not considered in this study. Thus we extend the Standard model Lagrangian in the following way:

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{eff} \tag{1}$$

where \mathcal{L}_{eff} is :

$$\mathcal{L}_{eff} = \frac{c_{WWW}}{\Lambda^2} \mathcal{O}_{WWW} + \frac{c_W}{\Lambda^2} \mathcal{O}_W + \frac{c_B}{\Lambda^2} \mathcal{O}_B$$
(2)

Electroweak production of Z and two jets

Events with two opposite-charged leptons and a dijet system with high invariant mass \rightarrow separation btw sign. and bkg through MV analysis

SIGNAL DIAGRAMS BACKGROUND

 $\sigma_{EWK} (IIjj) = 552 \pm 19 \text{ (stat)} \pm 55 \text{ (syst) fb}$ First measurement of this process at 13 TeV (agreement with SM) $\sigma_{LO} (IIjj) = 543 \pm 24 \text{ fb}$

The associated jet activity in signal events is found to be in agreement with QCD LO predictions as a function of kinematical observables CMS-SMP-16-018

W-boson differential cross sections at 13 TeV

Going differential..as a function of number of additional jets, leading jet p_T and third jet p_T .. (jets in the central region with $p_T > 30$ GeV)

Predictions from MC generators at NLO (up to 2 partons) + PS describe very well the measurements..LO predictions are slightly worse in terms of normalization CMS-SMP-16-005

Paolo Gunnellini

Multijet cross section at 8 TeV

Two leading jets with $p_T > 150 \text{ GeV in } |y| < 2.5$ $H_T = 0.5 \cdot (p_T^1 + p_T^2)$

CMS multijet measurements allow extraction of value of α_s :

 $\alpha_{S}(M_{Z}) = 0.1150 \pm 0.0010 (PDF) \pm ^{+0.005}_{-0.000} (scale)...$

CMS-SMP-16-008