

Measurement of W, Z boson production and tt̄ / Z cross-section ratios by ATLAS

Artur Trofymov, Zakharchuk Nataliia

DESY

LHC discussion 12.06.2017

Introduction

- Drell-Yan is the largest source of isolated leptons at LHC
- Theory calculations at NNLO QCD and NLO EW
- Use Drell-Yan data to extract information on calculation inputs

To constrain calculation uncertainties

Measurements in rapidity bins provide information for parton flavour parametrisation as a fiction of x

$$\longrightarrow \ y = \frac{1}{2}\ln(\frac{x_1}{x_2})$$

This talk focuses on

• W, Z precision measurements at
$$\sqrt{s} = 7 \text{ TeV}$$

• tt / Z ratios at $\sqrt{s} = 7, 8, 13 \text{ TeV}$

 $\sqrt{s} = 7 \text{ TeV}, \ \int \mathcal{L} = 4.6 \text{ fb}^{-1}$

Precision measurement and interpretation of inclusive $W^+ W^-$ and Z/γ^* production cross sections with the ATLAS detector

Eur. Phys. J. C 77 (2017) 367

Motivation

- Increasing the precision comparing to previous ATLAS measurements ($\sqrt{s} = 7 \text{ TeV}$, $\int \mathcal{L} = 33-36 \text{ pb}^{-1}$: <u>Phys.Rev. D85</u>)
- Test of **electron-muon universality** in the weak interaction sector:
 - ATLAS results at 13 TeV with 50ns data: Phys. Lett. B 759

 $Q^2 = 1.9 \text{ GeV}^2$, x=0.023

▲ ABKM09

NNPDF2.1

 MSTW08 CT10 (NLO)

-0.2

total uncertainty

0

experimental uncertainty

0.2

0.4

0.6

0.8

- **Strangness density** at lox *x*
- Cross-section ratios:
 - → Cancellation of many experimental uncertainties
 - \longrightarrow W⁺/W⁻: ratio sensitive to **u**_v-**d**_v quark distributions
 - → W[±]/Z ratio: sensitive to **s-quark** distribution
- Sensitivity to PDF by performing measurements in bins of y_{ll} and η_l :

epWZ free s

1.2

1.4

rs

à

Ш

r ĭ

W, Z kinematics and integrated cross sections

12.06.2017

Ν	Bkg (%)
12.8 M	8.3
15.4 M	7.7
1.0 M	0.47
0.3 M	2.8
1.6 M	0.41
	N 12.8 M 15.4 M 1.0 M 0.3 M 1.6 M

EW and Top bkg: MC simulation

MJ bkg: data-driven method

	$\sigma^{\text{fid}} \pm \text{stat} \pm \text{syst} \pm \text{lumi [pb]}$
$W^+ \rightarrow e^+ v$	$2939 \pm 1 \pm 28 \pm 53$
$W^+ \rightarrow \mu^+ \nu$	$2948 \pm 1 \pm 21 \pm 53$
$W \rightarrow e \bar{\nu}$	$1957 \pm 1 \pm 21 \pm 35$
$W \rightarrow \mu^{-} \bar{\nu}$	$1964 \pm 1 \pm 13 \pm 35$
$\mathbf{Z}/\gamma^* \rightarrow \mathbf{e}^+\mathbf{e}^-$	$502.7 \pm 0.5 \pm 2.0 \pm 9.0$
$\mathbf{Z}/\gamma^* \rightarrow \mu^+ \mu^-$	$501.4 \pm 0.4 \pm 2.3 \pm 9.0$

• W sys: Hadronic recoil response (E_T^{miss} , JES, JER), MJ bkg, Reco eff.

Z sys: lepton Reco, ID, Iso eff.

Significant uncertainty reduction comparing to the previous measurement: Phys.Rev. D85 (2012)

Lepton universality and combination

Lepton universality

- \rightarrow **R**_W and **R**_Z represent ratios of corresponding branching fractions
- Due to cancellation of correlated uncertainties reach a precision of 1% and 0.5% for W and Z branching fractions, respectively
- Precision improvement comparing to previously published 7 TeV and 13 TeV (50 ns) results: <u>Phys.Rev. D85 (2012)</u>, <u>Phys. Lett. B 759 (2016)</u>
- The measurements confirm lepton ($e-\mu$) universality (SM: unity) in the weak vector-boson decays

Combination of *e* and *µ* channels

Combination is based on χ^2 minimisation and uses individual sources of systematic uncertainties

Correlation model:

FRIMEN

	Z	\mathbf{W}^+	W-
Z	1	0.349(0.964)	0.314(0.958)
W +		1	0.890(0.991)
W-			1

Combined cross sections:				
	$\sigma^{\text{fid}} \pm \text{stat} \pm \text{syst} \pm \text{lumi [pb]}$			
$W \rightarrow e\nu$	$4896 \pm 2 \pm 49 \pm 88$			
$W \rightarrow \mu \nu$	$4912 \pm 1 \pm 32 \pm 88$			
$W \rightarrow l\nu$	$4911 \pm 1 \pm 26 \pm 88$			
$\mathbf{Z}/\gamma^* \rightarrow \mathbf{ll}$	$502.2 \pm 0.3 \pm 1.7 \pm 9.0$			

* Numbers in brackets are calculated taking into account luminosity uncertainty

A Main correlated experimental syst. sources: e and μ momentum scale and resolution, hadronic recoil

response, signal modelling, bkg. estimation with MC simulation

12.06.2017

Cross-section ratios

- Complete cancellation of luminosity uncertainty
- High precision of data comparing to some theory predictions indicates their potential constraining power
- ▶ W⁺/W⁻ ratio is generally well reproduced
- Predictions for W[±]/Z are systematically higher than measured in data

→ compatible with results based on 13 TeV data (50 ns):

Phys. Lett. B 759 (2016)

12.06.2017

Differential cross sections

12.06.2017

PDF profiling

12.06.2017

- Quantitive estimation of data and predictions agreement
- Provides a shifted set of parton distributions with reduced uncertainties
- Quark density ratio R_S (for MMHT14 and CT14) at x ~ 0.023 shows significant
 reduction of uncertainties and increasing

of central values towards unity

- Supports the hypothesis of unsuppressed s-quark density at low x
- ABM12 demonstrates tension between profiled and original R_s
 - -> Profiled set has increased central value
 - Uncertainty stays at the same high level of precision
- $x\overline{d} x\overline{u}$ profiled result is shifted towards smaller x values

QCD analysis

- QCD fit is performed using DIS HERA I+II and ATLAS DY data
 - → ATLAS data provide more sensitivity to quark sea and valencequark distributions at lower *x*
- Data are all **described** by the fit (ATLAS: $\chi^2/npts = 108/61$,

total: $\chi^2/n.d.f. = 1321/1102$)

Fit determines a **new set of PDFs**, termed **ATLAS-epWZ16**

ATLAS-epWZ16 has smaller experimental uncertainties than the ATLAS-epWZ12 set

Measured R_s confirms that the strangeness is unsuppressed at low x~0.023 and low Q² = 1.9 GeV²

 \blacktriangleright IV_{CS}I obtained from the fit where it was varied, while rest CKM elements were fixed

12.06.2017

$$\sqrt{s} = 13 \text{ TeV}, \ \int \mathcal{L} = 3.2 \text{ fb}^{-1}$$

Measurements of top-quark pair to Z-boson cross-section ratios at $\sqrt{s} = 13, 8, 7$ TeV with the ATLAS detector

JHEP 02 (2017) 117

Motivation

Single $\sigma_{t\bar{t}}/\sigma_Z$ ratios at given \sqrt{s}

- Sensitive to the gluon-to-quark PDF ratio
- Luminosity uncertainty cancelation
- Lepton-related systematic cancelation

Single $R_Z^{i/j~{ m TeV}}$, $R_{t\bar{t}}^{i/j~{ m TeV}}$ ratios at different \sqrt{s}

- Systematic uncertainties cancelation
- σ_Z at different \sqrt{s} have similar PDF sensitivity $\rightarrow Z$ boson data can be used to cross-normalise measurements at different \sqrt{s}

Double ratios

Luminosity-uncertainty-independent checks of SM

Public results used in ratios:

- ▶ *tt* at 7, 8, 13 TeV: <u>Eur. Phys. J. C74</u> and <u>C76</u>, <u>Phys. Lett. B 761</u>
- Z at 7, 8, TeV: <u>arXiv:1612.03016</u>, <u>Eur. Phys. J. C76(5) 1-61</u>

12.06.2017

Z analysis at 13 TeV

Systematic sources

Source	$Z \rightarrow e^+ e^- $ [%]	$Z \to \mu^+ \mu^- \ [\%]$
Lepton trigger	< 0.1	0.1
Lepton reconstruction, ID	0.4	0.7
Lepton isolation	0.1	0.4
Lepton scale and resolution	0.2	0.1
Charge identification	0.1	_
Pile-up modelling	< 0.1	< 0.1
PDF	0.1	< 0.1
$p_T^{\ell\ell}$ mismodelling	0.1	< 0.1
Total	0.5	0.8

- Background contributions
 - estimated from MC simulations
 - total background event: ~0.5%
 - main contribution: top-quark pair production
 - sum of all electroweak backgrounds: ~0.2%
 - multijet events: < 0.1%</p>

Correlation model

Correlation ellipses

• Opposite sign of correlation in **data provides discriminative input to PDFs** determination

Correlation of grouped systematic sources

	$\delta \sigma_Z^{\rm fid}$			$\delta \sigma_{t\bar{t}}^{\text{tot}}$		
Source / \sqrt{s} [TeV]	13	8	7	13	8^{ι}	7
Luminosity	А	В	С	А	В	С
Beam energy	А	А	А	А	А	А
Muon (lepton) trigger	Α	\mathbf{A}^*	Α	А	В	В
Muon reconstruction/ID	Α	В	С	А	D	D
Muon isolation	A	А	Α	В	С	D
Muon momentum scale	A	Α	Α	Α	А	А
Electron trigger	Α	А	А	А		
Electron reconstruction/ID	Α	В	С	А	D	D
Electron isolation	A	А		В	С	D
Electron energy scale	A	А	Α	А	А	А
Jet energy scale				А	В	В
b-tagging				А	В	В
Background	А	А	Α	В	В	В
Signal modelling (incl. PDF)	Α	А	А	B*	В	В

FRIMFN

12.06.2017

Main source of correlation is the luminosity uncertainty

▶ **Table entries:** → in different rows are uncorrelated

- within a row with the same letter are fully correlated
- → with starred letter are mostly correlated
- box dominant uncertainty sources

tt to Z ratios at a given √s

- ▶ Luminosity uncertainties almost entirely cancel
 ▶ ATLAS data are more precise than most of the theory predictions → indication of strong constraining power
- Similar pattern of predictions for all \sqrt{s} :
 - → ABM12 yields the lowest values
 - → PDF4LHC sets predict the largest ratios
 - → HERA-based sets are in the middle

Z ratios at different √s

Uncertainties dominated by the luminosity uncertainty

- Most of predictions agree with data within exp. uncertainty
 - May indicate that the luminosity-determination uncertainty in ratio is conservative
 - → Z-boson data could be used to cross-normalise the measurements at the different centre-of-mass energies

tt ratios at different √s

- Predictions follow the same pattern for all ratios
 Deviation of 8 TeV to 7 TeV measured ratio, at the level of ~2σ from PDF4LHC, was observed in previously published results: Eur. Phys. J. C74
 - Motivation to test with double ratio where luminosity uncertainty should cancel

12.06.2017

tī to Z double ratios at different \sqrt{s}

- Almost complete cancellation of the luminosity uncertainty
 → More than compensates for the uncertainties which Z boson measurement bring to the ratios
 Trends are similar to those observed for the tt single ratios
 Data theory tension in 8 to 7 TeV ratio is increased:
 → Most of predictions deviate from data at the level of
 - ~ 3σ , where σ is the total exp.+lumi. uncertainty

12.06.2017

PDF Constraint

Gluon distributions

- The impact of the ATLAS data on the PDF uncertainties is quantified using PDF profiling
- Central values of the profiled distribution agree very well with the original ATLAS-epWZ12 set
- $t\bar{t}$ and Z cross section data impose visible constraints on the gluon distribution at $x \sim 0.1$
- Profiling was also performed excluding 7 TeV $t\bar{t}$ data yielding similar results

Summary

WZ precision measurements

- A measurement **precision at sub-percent level**, higher than of predictions
- Quantitive comparison of differential x-sections showed deviations of predictions, hinting the data impact on the determination of s-quark distribution
- Measurement used to derive new set of parton distribution functions ATLAS-epWZ16
- QCD fit analysis supported the previous atlas observations of a large ratio of s-quark distribution to the lighter sea-quark distributions at low x
- Determination of CKM matrix element $|V_{CS}|$ is performed

tt / Z cross-section ratios

- tt to Z experimental precision is higher then theoretical (indicates constraining power) due to luminosity and lepton-related systematic cancellation
- **Z** to **Z** ratios demonstrate very good agreement between data and predictions
- tt to tt measured ratios show different compatibility with the predictions for different \sqrt{s}
- Double ratios provide complete cancellation of the luminosity uncertainty
- PDF constraint: presented data have significant power to constrain the gluon distribution function at Bjorken-x ~ 0.1

Backup slides

12.06.2017

Summary of results from ATLAS and CMS

ATLAS+CMS Preliminary LHCto	pWG $\sigma_{t\bar{t}}$ sumr	nary, / s = 7 TeV	May 2017
NNLO+NNLL PRL 110 (2013) 25200	4		
$m_{top} = 1/2.5 \text{ GeV}, \ \alpha_s(M_z) = 0.118\pm0.$	001	⊢ , , , ,	
scale \oplus PDF $\oplus \alpha_{\alpha}$ uncertainty		total stat	
	121	$\sigma_{t\bar{t}} \pm (stat) \pm (syst) \pm (lumi)$	
ATLAS, I+jets	F-1-1	179 ± 4 ± 9 ± 7 pb	L _{int} =0.7 fb ⁻¹
ATLAS, dilepton (*)	+=	$173 \pm 6^{+14}_{-11} + 8_{-7}$ pb	L _{int} =0.7 fb ⁻¹
ATLAS, all jets (*)		167 ± 18 ± 78 ± 6 pb	L _{int} =1.0 fb ⁻¹
ATLAS combined	⊢	177 ± 3 ⁺⁸ ₋₇ ± 7 pb	L _{int} =0.7-1.0 fb ⁻¹
CMS, I+jets (*)	→ →	164 ± 3 ± 12 ± 7 pb	L _{int} =0.8-1.1 fb ⁻¹
CMS, dilepton (*)	+ <mark>+++</mark> 1	170 ± 4 ± 16 ± 8 pb	L _{int} =1.1 fb ⁻¹
CMS, τ _{had} +μ (*)	-+1	$149 \pm 24 \pm 26 \pm 9 \text{ pb}$	L _{int} =1.1 fb ⁻¹
CMS, all jets (*)		$136 \pm 20 \pm 40 \pm 8 \text{ pb}$	L _{int} =1.1 fb ⁻¹
CMS combined	•1	$166 \pm 2 \pm 11 \pm 8 \ pb$	L _{int} =0.8-1.1 fb ⁻¹
LHC combined (Sep 2012)	- M -1	$173 ~\pm~ 2 ~\pm~ 8 ~\pm~ 6 ~pb$	L_{int} =0.7-1.1 fb ⁻¹
ATLAS, I+jets, b→Xμν	•	165 ± 2 ± 17 ± 3 pb	L _{int} =4.7 fb ⁻¹
ATLAS, dilepton eμ, b-tag	Hatt	182.9 ± 3.1 ± 4.2 ± 3.6 pb	L _{int} =4.6 fb ⁻¹
ATLAS, dilepton $e\mu$, $N_{iets} - E_T^{miss}$		181.2 ± 2.8 ^{+ 9.7} _{- 9.5} ± 3.3 pb	L _{int} =4.6 fb ⁻¹
ATLAS, τ _{had} +jets		194 ± 18 ± 46 pb	L_{int} =1.7 fb ⁻¹
ATLAS, all jets		$168 \pm 12^{+60}_{-57} \pm 7 \text{ pb}$	L _{int} =4.7 fb ⁻¹
ATLAS, τ _{had} +I ⊢		$183 \pm 9 \pm 23 \pm 3 \text{ pb}$	L _{int} =4.6 fb ⁻¹
CMS, I+jets	+ 1	161.7 ± 6.0 ± 12.0 ± 3.6 pt	D L _{int} =5.0 fb ⁻¹
CMS, dilepton eµ	Heid	173.6 ± 2.1 ^{+4.5} _{-4.0} ± 3.8 pb	L _{int} =5.0 fb ⁻¹
CMS, τ _{had} +l	-	$143 \pm 14 \pm 22 \pm 3 \text{ pb}$	L _{int} =2.2 fb ⁻¹
CMS, τ _{had} +jets		$152 \pm 12 \pm 32 \pm 3 \text{ pb}$	L _{int} =3.9 fb ⁻¹
CMS, all jets		$139 \pm 10 \pm 26 \pm 3 \text{ pb}$	L _{int} =3.5 fb ⁻¹
(*) Superseded by results shown below the line			
		NNPDF3.0 JHEP 04 (2015) 04	0
		MMHT14 EPJ C75 (2015) 5	
		CT14 PRD 93 (2016) 033006	
		ABM12 PRD 89 (2015) 054028 [$\alpha_{s}(M_{\gamma}) = 0.113$]	
50 100 150	200	250 300	350
	σ., [pb]		

12.06.2017

W kinematics

12.06.2017

Precision comparison (lepton systematics)

			• • D
0.8	0.8	0.8	1.6
0.9	0.8	1.1	1.8
0.4	0.4	0.4	0.7
0.8	0.7	1.0	
2.3	2.4	2.8	3.3
3.4			
	0.9 0.4 0.8 2.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

<u>2010 data, 36 pb</u>	$\delta\sigma_{W^{\pm}}$	$\delta\sigma_{W+}$	$\delta\sigma_{W-}$	$\delta \sigma_Z$
Muon reconstruction	0.3	0.3	0.3	0.6
Muon isolation	0.2	0.2	0.2	0.3
Muon $p_{\rm T}$ resolution	0.04	0.03	0.05	0.02
Muon $p_{\rm T}$ scale	0.4	0.6	0.6	0.2
QCD background	0.6	0.5	0.8	0.3
Total excluding luminosity	2.1	2.3	2.6	2.2
Luminosity	3.4			

2011 data, 4.6 fb $^{-1}$	$\delta\sigma_{W^+}$	$\delta\sigma_{W-}$	$\delta\sigma_Z$	$\delta\sigma_{\mathrm{forward}Z}$
Reconstruction efficiency	0.12	0.12	0.20	0.13
Identification efficiency	0.09	0.09	0.16	0.12
$E_{\rm T}^{\rm miss}$ soft term scale	0.14	0.13	-	-
$E_{\rm T}^{\rm miss}$ soft term resolution	0.06	0.04	-	_
Multijet background	0.55	0.72	0.03	0.05
Total experimental uncertainty	0.94	1.08	0.35	2.29
Luminosity			1.8	
2011 data, 4.6 fb $^{-1}$		$\delta\sigma_{W^+}$	$\delta\sigma_{W-}$	$\delta\sigma_Z$
Reconstruction efficiency		0.19	0.17	0.30
Isolation efficiency		0.10	0.09	0.15
Muon $p_{\rm T}$ resolution		0.01	0.01	< 0.01
Muon $p_{\rm T}$ scale		0.18	0.17	0.03
Multijet background		0.33	0.27	0.07
Total experimental uncertainty		0.61	0.59	0.43
Luminosity			1.8	

12.06.2017

Lepton universality comparison

12.06.2017

Comparison with theory

- 2-d presentation conveys both values and correlations of measurement and predictions
 Spread of predictions is larger than uncert. of data
- The measurements are seen to discriminate between different PDF sets and to provide info to reduce PDF uncertainties

Differential cross sections

Low mass

dơ/dly_∥l [pb] 1.8 ATLAS $Z/\gamma^* \rightarrow |^+|^ \sqrt{s} = 7 \text{ TeV}, 4.6 \text{ fb}^{-1}$ 1.6 $116 < m_{\parallel} < 150 \text{ GeV}$ р_{т 1} > 20 GeV m¹ < 2.5 1.4 1.2 ****4 1 0.8 Data ★ ABM12 🛟 CT14 0.6 HERAPDF2.0 JR14 0.4 Uncorr. uncertainty △ MMHT2014 Total uncertainty ☆ NNPDF3.0 luminosity excluded (± 1.8%) 0.2 1.05 Theory/Data 1.02 0.05 0 0 0 **ŧ**₄™Ą 0.5 1.5 1 2 ly_l

Central

High mass

Central

12.06.2017

PDF profiling

- s-quark distribution significantly increased and the uncertainties are reduced
- Reduction of light sea at low x

12.06.2017

QCD analysis

ATLAS-epWZ16

QCD fit

12.06.2017

Theoretical predictions

Cross-section predictions

	σ_Z^{fid}				$\sigma_{t\bar{t}}^{tot}$	
$\sqrt{s} [TeV]$	13	8	7	13	8	7
Central value [pb]	744	486	432	842	259	182
Total Unc. $[\%]$	$+3.0 \\ -3.7$	$+2.8 \\ -3.3$	$+2.9 \\ -3.2$	$\begin{vmatrix} +5\\-6 \end{vmatrix}$	$+6 \\ -6$	$^{+6}_{-6}$

• $\sigma_{t\bar{t}}$ NNLO+NNLL calculations with Top++

• σ_Z NNLO calculations with

DYTURBO (fast ver. of DYNNLO)

NLO EW corrections with FEWZ 3.1

• CT14 PDF set is used as a baseline

Fiducial definition

	7 TeV	8 TeV	13 TeV
FSR treatment	Born	Born	Born
$p_{T,\ell} >$	20 GeV	20 GeV	25 GeV
$ \eta_{\ell} <$	2.5	2.4	2.5
$ y_{\ell\ell} <$	-	2.4	-
$m_{\ell\ell}$	66-116 GeV	66-116 GeV	66-116 GeV

Extrapolation factors

	13 TeV	8 TeV	7 TeV
A_Z	0.395 ± 0.007	0.466 ± 0.008	0.505 ± 0.009
E_Z	-	0.941 ± 0.001	0.898 ± 0.001

- ▶ 13 TeV fiducial phase space is used as common
- Az factor is computed for extrapolation from fiducial to total phase space
- **Ez factors** are estimated for extrapolation to 13TeV fiducial phase space

Uncertainties of the grouped systematic sources

		σ_Z			$\sigma_{t\bar{t}}$	
Source	$\sqrt{s} = 13 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 13 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$	$\sqrt{s} = 7 \text{ TeV}$
Luminosity	2.10	1.90	1.80	2.31	2.10	1.98
Beam energy	0.69	0.62	0.60	1.50	1.72	1.79
Muon (lepton) trigger	0.12	0.55	0.05	0.05	0.17	0.19
Muon reco and ID	0.68	0.45	0.30	0.44	0.42	0.31
Muon isolation	0.41	0.04	0.15	0.27	0.22	0.44
Muom momentum scale	0.06	0.03	0.03	0.04	0.01	0.14
Electron trigger	0.01	0.19	0.04	0.14		
Electron reco and ID	0.41	0.80	0.26	0.34	0.41	0.13
Electron isolation	0.14	0.00		0.39	0.30	0.59
Electron energy scale	0.25	0.07	0.08	0.20	0.51	0.21
Jet energy scale				0.38	0.72	0.40
Flavour tagging		—	—	0.53	0.40	0.46
Background	0.08	0.15	0.08	1.09	1.04	1.04
Signal modelling (incl PDF)	0.12	0.08	0.27	2.98	1.70	1.81

The correlation coefficients

• With luminosity and bee energy uncertainties

	$Z 13 \mathrm{TeV}$	$t\bar{t}~13{\rm TeV}$	$Z \ 8 \mathrm{TeV}$	$t\bar{t}$ 8 TeV	Z 7 TeV	$t\bar{t}~7{ m TeV}$
$Z~13{ m TeV}$	1.00	0.61	0.10	0.16	0.10	0.15
$t\bar{t}$ 13 TeV		1.00	0.11	0.32	0.11	0.31
$Z \ 8 { m TeV}$			1.00	0.68	0.10	0.14
$t\bar{t} \ 8 { m TeV}$				1.00	0.15	0.54
$Z~7{ m TeV}$					1.00	0.62
$t\bar{t}$ 7 TeV						1.00

• Without luminosity and bee energy uncertainties

	Z 13 TeV	$t\bar{t}~13{\rm TeV}$	Z 8 TeV	$t\bar{t}$ 8 TeV	Z 7 TeV	$t\bar{t}$ 7 TeV
$Z 13 { m TeV}$	1.	0.13	0.09	0.08	0.12	0.03
$t\bar{t}$ 13 TeV		1.	0.01	0.32	0.00	0.27
$Z~8{ m TeV}$			1.	0.01	0.09	0.00
$t\bar{t} \ 8 { m TeV}$				1.	0.00	0.67
$Z~7{ m TeV}$					1.	0.00
$t\bar{t}~7{\rm TeV}$						1.

27.03.2017

Trofymov Artur

JHEP 02 (2017)117

Measured and predicts cross-sections

• Measured cross-sections (Z - combined channels)

\sqrt{s} [TeV]	Value \pm stat \pm syst \pm beam \pm lumi [pb]				
	$\sigma_Z^{ m fid}$				
13	$777 \pm 1(0.1\%) \pm 3(0.4\%) \pm 5(0.7\%) \pm 16(2.1\%)$				
8	$506 \pm < 1 \ (< 0.1\%) \pm 3 \ (0.6\%) \pm 3 \ (0.6\%) \pm 10 \ (1.9\%)$				
7	$451 \pm < 1 (0.1\%) \pm 1 (0.3\%) \pm 3 (0.6\%) \pm 8 (1.8\%)$				
	$\sigma_{_{t\bar{t}}}^{ m tot}$				
13	$818 \pm 8(0.9\%) \pm 27(3.3\%) \pm 12(1.5\%) \pm 19(2.3\%)$				
8	$243 \pm 2(0.7\%) \pm 5(2.3\%) \pm 4(1.7\%) \pm 5(2.1\%)$				
7	$183 \pm 3(1.7\%) \pm 4(2.3\%) \pm 3(1.8\%) \pm 4(2.0\%)$				

• Predicted cross-sections (Z - combined channels)

	$\sigma \pm \text{stat} \pm \text{syst} \text{ [pb]}$				
\sqrt{s} [TeV]	13	8	7		
$\sigma_{Z \rightarrow ee}^{\mathrm{fid}}$	$778.3 \pm 0.7 \pm 17.7$	$507.0 \pm 0.2 \pm 11.0$	$451.2 \pm 0.5 \pm 8.7$		
$\sigma_{Z \to \mu\mu}^{\rm fid}$	$774.4 \pm 0.6 \pm 18.2$	$504.7 \pm 0.2 \pm 10.8$	$450.0 \pm 0.3 \pm 8.8$		
$\sigma_{t\bar{t} \to e\mu + X}^{\text{fid}}$	$9.94 \pm 0.09 \pm 0.37$	$3.04 \pm 0.02 \pm 0.10$	$2.30 \pm 0.04 \pm 0.08$		
$\sigma_{t\bar{t}}^{ m tot}$	818 ± 8 ± 35	$243 \pm 2 \pm 9$	$183 \pm 3 \pm 6$		

• Z-boson measured cross-sections (electron end muon channels separate)

	25 ns			
	Electron channel Muon channel			
	value \pm stat \pm syst \pm lumi	value \pm stat \pm syst \pm lumi		
Correction C_Z	$0.5536 \pm 0.0002 \begin{array}{c} +0.0028 \\ -0.0029 \end{array}$	$0.7064 \pm 0.0003 + 0.0057 - 0.0057$		
Fiducial cross				
section (pb)	$778.3 \pm 0.7 \pm 4.0 \pm 16.3$	$774.4 \pm 0.6 \pm 6.2 \pm 16.3$		
Total cross				
section (pb)	$1970.3 \pm 1.7 \pm 36.5 \pm 41.4$	$1960.6 \pm 1.5 \pm 38.3 \pm 41.2$		

JHEP 02 (2017)117

PDF Constraint

Light-quark sea distributions

• $t\bar{t}$ and Z cross-section data impose visible constraints on the light-quark sea distribution at x < 0.02and on the gluon distribution at $x \sim 0.1$

27.03.2017

JHEP 02 (2017)117

All single and double ratios

27.03.2017

	$\sigma^{tot}/\sigma^{tot}$	$\sigma^{tot}/\sigma^{fid}$	$\sigma^{fid}/\sigma^{fid}$	
	value \pm stat \pm syst \pm lumi	value \pm stat \pm syst \pm lumi	value \pm stat \pm syst \pm lumi	
$\sigma_{t\bar{t}}^{13TeV}/\sigma_Z^{13TeV}$	$0.414 \pm 0.004(0.92\%) \pm 0.016(3.84\%) \pm 0.001(0.21\%)$	$1.053 \pm 0.010(0.92\%) \pm 0.036(3.40\%) \pm 0.002(0.21\%)$	$0.01281 \pm 0.00012(0.92\%) \pm 0.00044(3.40\%) \pm 0.00003(0.21\%)$	
$\sigma_{t\bar{t}}^{8TeV}/\sigma_{Z}^{8TeV}$	$0.211 \pm 0.001(0.71\%) \pm 0.006(2.73\%) \pm 0.000(0.20\%)$	$0.480 \pm 0.003(0.71\%) \pm 0.012(2.57\%) \pm 0.001(0.20\%)$	$0.00602 \pm 0.00004(0.72\%) \pm 0.00014(2.35\%) \pm 0.00001(0.20\%)$	
$\sigma_{t\bar{t}}^{7TeV}/\sigma_Z^{7TeV}$	$0.184 \pm 0.003(1.69\%) \pm 0.005(2.71\%) \pm 0.000(0.18\%)$	$0.406 \pm 0.007(1.69\%) \pm 0.011(2.59\%) \pm 0.001(0.18\%)$	$0.00511 \pm 0.00009(1.68\%) \pm 0.00013(2.46\%) \pm 0.00001(0.18\%)$	
$\sigma_Z^{13TeV}/\sigma_Z^{8TeV}$	$1.714 \pm 0.001(0.06\%) \pm 0.013(0.77\%) \pm 0.049(2.83\%)$	-	$1.537 \pm 0.001(0.06\%) \pm 0.010(0.67\%) \pm 0.044(2.83\%)$	
$\sigma_Z^{13TeV}/\sigma_Z^{7TeV}$	$1.988 \pm 0.002(0.09\%) \pm 0.014(0.71\%) \pm 0.055(2.77\%)$	-	$1.724 \pm 0.001(0.09\%) \pm 0.009(0.52\%) \pm 0.048(2.77\%)$	
$\sigma_Z^{8TeV}/\sigma_Z^{7TeV}$	$1.160 \pm 0.001(0.07\%) \pm 0.007(0.63\%) \pm 0.030(2.62\%)$	-	$1.122 \pm 0.001(0.07\%) \pm 0.007(0.61\%) \pm 0.029(2.62\%)$	
$\sigma^{13TeV}_{t\bar{t}}/\sigma^{8TeV}_{t\bar{t}}$	$3.365 \pm 0.039(1.16\%) \pm 0.113(3.35\%) \pm 0.105(3.12\%)$	_	$3.270 \pm 0.038(1.17\%) \pm 0.107(3.28\%) \pm 0.102(3.12\%)$	
$\sigma_{t\bar{t}}^{13TeV}/\sigma_{t\bar{t}}^{7TeV}$	$4.470 \pm 0.086(1.92\%) \pm 0.149(3.33\%) \pm 0.136(3.04\%)$	-	$4.322 \pm 0.083(1.92\%) \pm 0.143(3.31\%) \pm 0.131(3.04\%)$	
$\sigma_{t\bar{t}}^{8TeV}/\sigma_{t\bar{t}}^{7TeV}$	$1.328 \pm 0.024(1.83\%) \pm 0.015(1.11\%) \pm 0.038(2.89\%)$	_	$1.322 \pm 0.024(1.83\%) \pm 0.015(1.12\%) \pm 0.038(2.89\%)$	

	R ^{tot} /R ^{tot}	R ^{tot} /R ^{fid}	R ^{fid} /R ^{fid}
	value \pm stat \pm syst	value \pm stat \pm syst	value \pm stat \pm syst
$\frac{\sigma^{13} TeV}{\frac{t\bar{t}}{\sigma^{13} TeV}} / \frac{\sigma^{8} TeV}{\frac{t\bar{t}}{\sigma^{8} TeV}}$	$1.966 \pm 0.023(1.16\%) \pm 0.067(3.40\%)$	$2.193 \pm 0.026(1.16\%) \pm 0.074(3.39\%)$	$2.131 \pm 0.025(1.17\%) \pm 0.071(3.34\%)$
$\frac{\sigma^{13} TeV}{\frac{t\bar{t}}{\sigma^{13} TeV}} / \frac{\sigma^{7} TeV}{\frac{t\bar{t}}{\sigma^{7} TeV}}$	$2.250 \pm 0.043(1.93\%) \pm 0.076(3.38\%)$	$2.594 \pm 0.050(1.93\%) \pm 0.086(3.32\%)$	$2.508 \pm 0.048(1.92\%) \pm 0.082(3.27\%)$
$\frac{\sigma^{8}TeV}{\frac{t\bar{t}}{\sigma^{8}TeV}} / \frac{\sigma^{7}TeV}{\frac{t\bar{t}}{\sigma^{7}TeV}}$	$1.145 \pm 0.021(1.83\%) \pm 0.015(1.31\%)$	$1.184 \pm 0.022(1.83\%) \pm 0.015(1.29\%)$	$1.178 \pm 0.022(1.83\%) \pm 0.015(1.31\%)$

JHEP 02 (2017)117