Young Investigator Group: Supersymmetry at the Terascale

Isabell-A. Melzer-Pellmann

"Helmholtz-Hochschul-Nachwuchsgruppe" at DESY in Co-operation with the Hamburg University (5 years)

Search for Supersymmetry at CMS:

- Optimisation of search strategies and data analysis
 - SUSY found?
 - comparison of different models
 - SUSY not found?
 - Setting of exclusion limits
 - Search for other physics beyond the Standard Model

Studies for future experiments:

- LHC-Upgrade (hadron calorimeter)
- Detector optimisation for the International Linear Collider

Data analysis:

- High energetic jets
- Missing energy
- Leptons (esp. muons)
- Search for a very small signal below high QCD background

Co-operation with the

Hamburg University

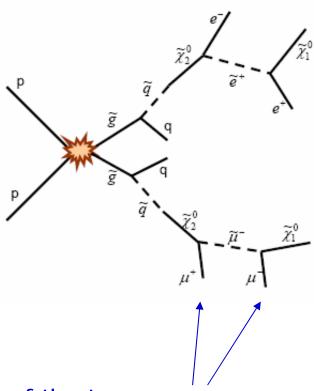
CMS contribution:

- Development of offline data quality monitoring (DQM) tools based on SUSY analysis (use of the "express line" reconstruction)
- Studies for the upgrade of the HCAL
- Shifts at DESY (CMS Center) and CERN

Group structure:

→ Group leader (I.M.-P.), 2 Postdocs, 3 PhD students (up to now only one PhD student employed – still 2 vacant positions)

Planned SUSY Analyses


- → Trigger quite simple
- Small QCD background

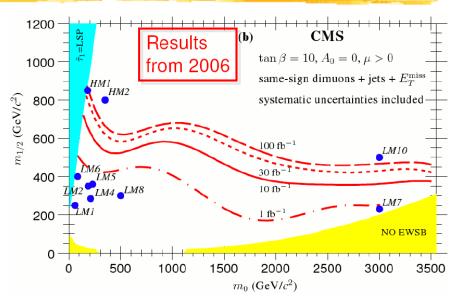
Jets +
$$E_T^{miss}$$
 + 1 muon

- → Relativ clean signature due to muon
- Trigger must be understood (probably difficult in the beginning)
- Background: top quark production,
 QCD events with jets, elektroweak
 boson production

Jets +
$$E_T^{miss}$$
 + 2 (odd-sign) muons

Characteristic invariant mass distribution of the two muons

Same sign dimuons


Already much work done by other groups, e.g.

D.Acosta, P.Avery, D.Dobur, Alexey Drozdetskiy,
A.Korytov, K.Matchev, G.Mitselmakher,
Yu. Pakhotin, R.Remington, J.Yelton
With many thanks to B.Kim and the UF T2 and HPC
(University of Florida, Gainesville)

(see talks in leptonic SUSY meeting 26/02/2009 and 26/03/2009)

Our plan:

- Establish and reproduce "standard" analysis
- Concentrate on MET measurements
- Implement SUSY variables in DQM

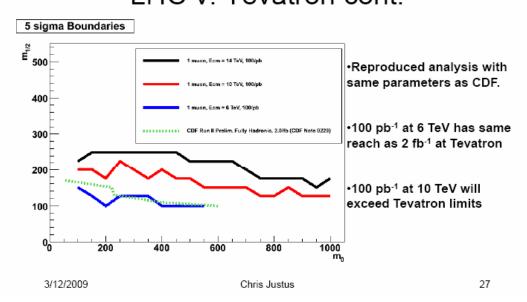
	Data Type	CMSSW Version	Input to MET Algorithms
* met	CaloMET	All Versions	SchemeB CaloTowers w / HF, w / o HO
metNoHF	CaloMET	≥ 2.0.0	SchemeB CaloTowers w/o HO,HF
metHO	CaloMET	≥ 2.1.8	SchemeB CaloTowers w / HO,HF
metNoHFHO	CaloMET	≥ 2.1.8	SchemeB CaloTowers w / HO, w / o HF
metOpt	CaloMET	≥ 2.0.0	Optimized CaloTowers w/ HF, w/o HO
metOptNoHF	CaloMET	≥ 2.0.0	Optimized CaloTowers w/o HO,HF
metOptHO	CaloMET	≥ 2.1.8	Optimized CaloTowers w/ HO,HF
metOptNoHFHO	CaloMET	≥ 2.1.8	Optimized CaloTowers w/ HO, w/o HF
pfMet	PFMET	≥ 2.2.0	PFCandidates
tcMet	MET	≥ 3-0-0	met, tracks, muons, pixelMatchGsfElectrons
htMetIC5	MET	≥ 2.0.0	iterativeCone5CaloJets
htMetKT4	MET	≥ 2.0.0	kt4CaloJets
htMetKT6	MET	≥ 2.0.0	kt6CaloJets
htMetSC5	MET	≥ 2.0.0	sisCone5CaloJets
htMetSC7	MET	≥ 2.0.0	sisCone7Calojets
genMet	GenMET	≤ 3.0.0	GenParticles excluding BSM's, ν 's, and μ 's
genMetNoNuBSM	GenMET	≤ 3.0.0	GenParticles excluding prompt v 's and μ 's
genMetFromIC5GenJets	GenMET	≥ 2.0.0	iterativeCone5GenJets
genMetCalo	GenMET	≥ 3.0.0	same as for genMet
genMetCaloAndNonPrompt	GenMET	≥ 3.0.0	same as for genMetNoNuBSM
genMetTrue	GenMET	≥ 3.0.0	GenParticles excluding BSM's and neutrino

One muons + jets + MET

Other groups involved: Aachen,

<u>Chris Justus</u>, Finn Rebassoo, Jeffrey Richman, David Stuart UCSB

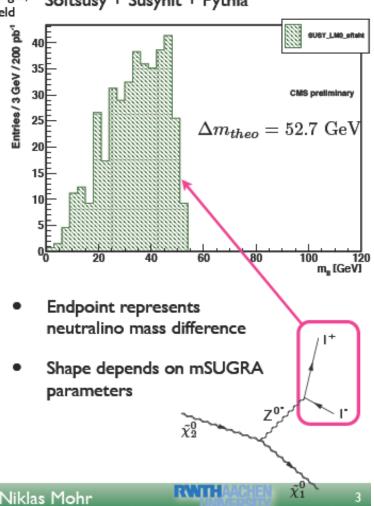
(see talks in leptonic SUSY meeting 12/02/2009 and 12/03/2009)


Our plan:

- Establish and reproduce "standard" analysis
- Concentrate on MET measurements
- Implement SUSY variables in DQM

Estimated 5 σ Discovery Reach: LHC v. Tevatron cont.

Odd-sign dimuons



Far developed analysis: Aachen see SUSY meeting 07/04/2009

Niklas Mohr,
Albert Bursche, Matthias
Edelhoff, Daniel Sprenger,
Klaus Roth, Lutz Feld

Softsusy + Susyhit + Pythia

Most interesting about this analysis: mass edge describing the neutralino mass difference

Technical work: DQM and CMS Center

Data Quality Monitoring (DQM):

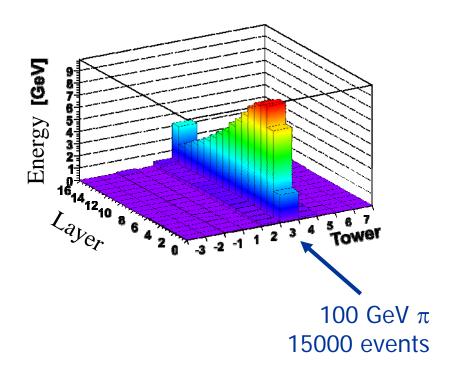
- All SUSY analyses shall contribute to the DQM based on SUSY specific variables
- One postdoc will spend about 1/3 of his/her time on DQM work, the second postdoc about 20%
- All group members will contribute substantially to DQM shifts (from the CMS Center)

CMS Center:

 One postdoc will spend about 10% of his/her time supporting Günter Eckerlin

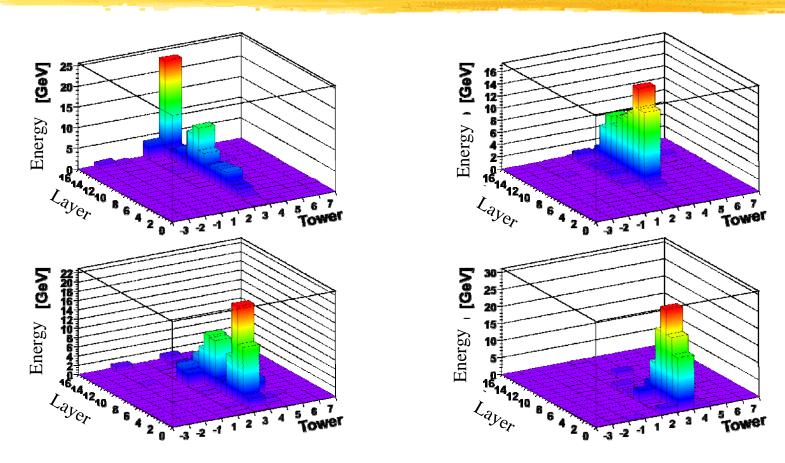
HCAL Upgrade:

- One postdoc will spend about 20% of his/her time on HCAL upgrade simulations
- Already work started from one PhD student (MS) in January


Main question for the studies (=simulations):

Can a longitudinal segmentation of the HCAL improve its resolution? How?

Energy distribution for 15000 events



Energy distribution for single events

Use longitudinal resolution to distinguish between em (high energy density) and hadronic part of the shower (use of different weights possible)

Efficiency is usually different for hadronic and em component :

$$\mathbf{S_h} = \mathbf{\epsilon_h} \mathbf{E_h} + \mathbf{\epsilon_e} \mathbf{E_e}$$
 $\mathbf{\epsilon_h} = \text{hadr. efficiency}, \ \mathbf{\epsilon_e} = \text{em efficiency}$

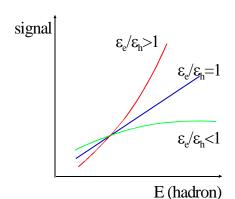
$$\frac{E_h}{E} = 1 - f_{\pi^0} = 1 - k \cdot lnE$$
 (GeV) $k \approx 0.1$ em component dependent on energy

Why Weighting?

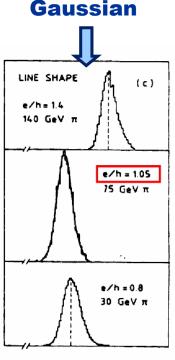
Efficiency is usually different for hadronic and em component:

$$\boldsymbol{S}_{\boldsymbol{h}} = \boldsymbol{\epsilon}_{\boldsymbol{h}} \boldsymbol{E}_{\boldsymbol{h}} + \boldsymbol{\epsilon}_{\boldsymbol{e}} \boldsymbol{E}_{\boldsymbol{e}}$$

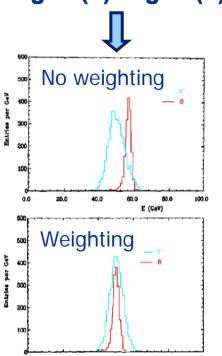
$$\varepsilon_h$$
= hadr. efficiency, ε_e = em efficiency

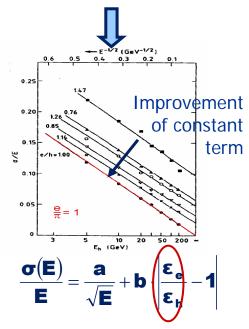

$$\frac{\mathbf{E_h}}{\mathbf{E}} = 1 - \mathbf{f_{\pi^0}} = 1 - \mathbf{k \cdot InE} \text{ (GeV)}$$

k ≈ **0.1** em component dependent on energy



Signals not linear




Signals not Gaussian

Signal(h)≠Signal(e)

Resolution worse

Efficiency is usually different for hadronic and em component :

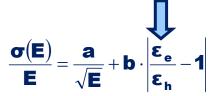
$$\mathbf{S}_{h} = \mathbf{\epsilon}_{h} \mathbf{E}_{h} + \mathbf{\epsilon}_{e} \mathbf{E}_{e}$$

$$\varepsilon_{h}$$
= hadr. efficiency, ε_{e} = em efficiency

$$\frac{\mathbf{E_h}}{\mathbf{F}} = \mathbf{1} - \mathbf{f_{\pi^0}} = \mathbf{1} - \mathbf{k} \cdot \mathbf{InE} \text{ (GeV)}$$

 $k \approx 0.1$

em component dependent on energy



Signals not linear

Signals not Gaussian

Signal(h)≠Signal(e)

Resolution worse

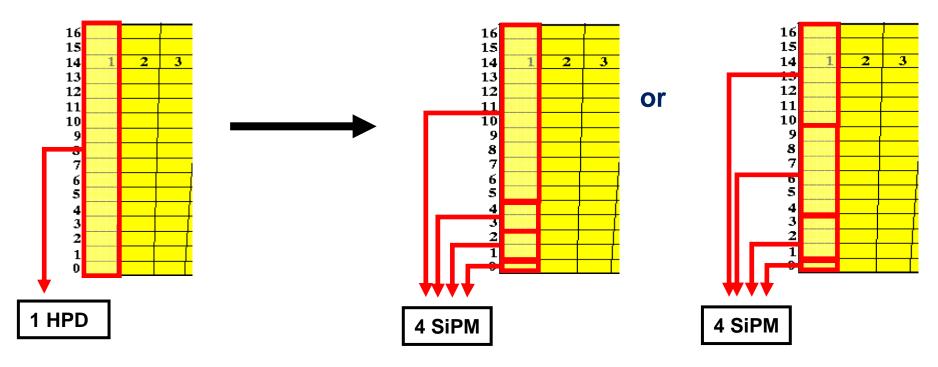
 e/π response from CMS NOTE-2004/032

"Validation of Geant4 Physics Using 1996 CMS HCAL Test Beam Data"

Resolution for CMS HCAL: from CMS NOTE-2004/020

"Measurement of the Pion **Energy Response and Resolution** in the Hadronic Barrel Calorimeter using CMS HCAL Test Beam 2002 Experiment"

Compensation:


enlarge ε_h , lower $\varepsilon_e \rightarrow Offline-Weighting \rightarrow Improve constant term$

Example scheme

Weighting is only possible with longitudinal resolution (the more layers the better © - one discussed possible option: 4 layers)

→ Different weighting methods possible (H1 method (iterative), tabulated weights (both methods need MC input from energy deposited in absorber),...)

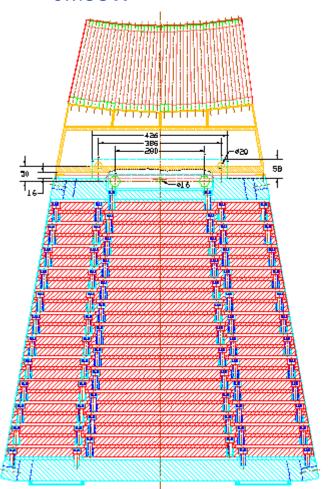
Started to work with a standalone (Geant3) simulation (faster, all information available (absorber energy, invisible energy etc.))

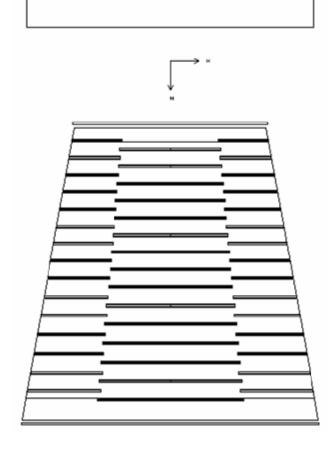
Why Geant3? - Simply because we have an expert ("Thanks to Vladimir Andreev!!") who managed to write the first version within one week.

Calculate and apply the weighting factors (for different π energies)

$$w^i(E_{meas}, \rho^i) = \frac{\langle E_{true} \rangle}{\langle E_{meas} \rangle}$$
 $e^{: \, \text{mdex}}$ $e^{: \, \text{energy density}}$ $e^{: \, \text{energy density}}$

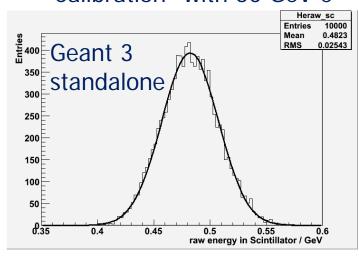
```
i : index
ρ: energy density
     (= absorber
     + scint. energy)
```

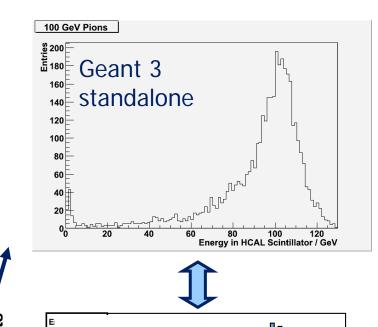

- Compare the energy spectra before/after weighting
- Determine energy resolution before/after weighting
- Try different schemes
- Try different weighting procedures

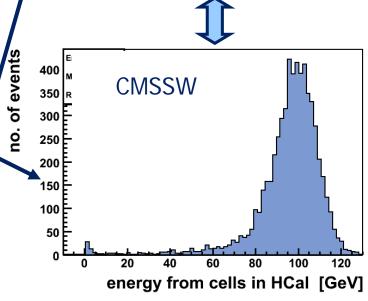

HCAL in Geant 3 standalone

Complex Detector in **CMSSW**

Simple HCAL standalone simulation (with single block of ECAL in front) in Geant3,

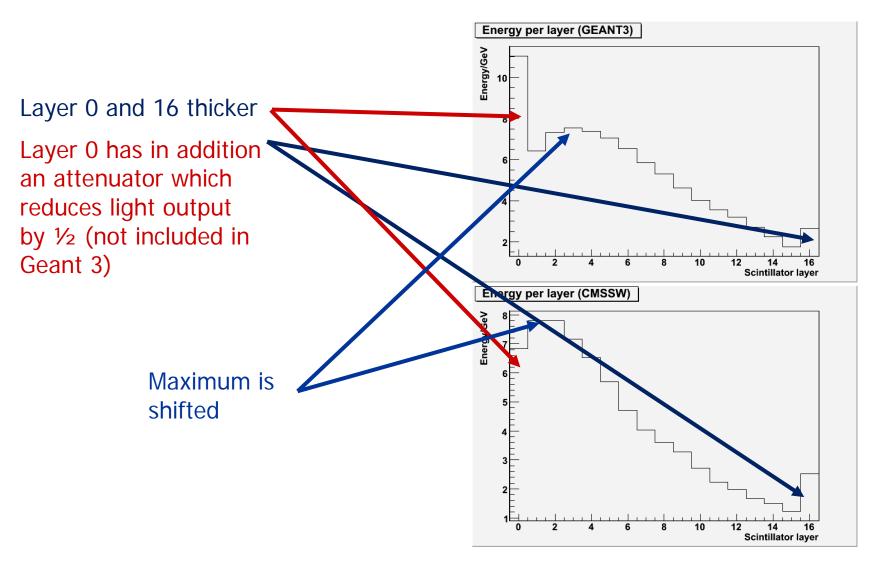



Comparison Geant3 - CMSSW



"Calibration" with 50 GeV e-

Don't expect perfect agreement, but comparison looks similar for total energy → check energy distribution in single layers (see next page)



Comparison CMSSW - Geant3

Conclusion and Outlook

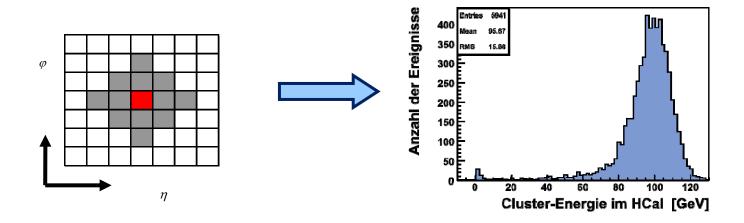
Manpower:

- Official start of the group: May
- → Postdocs will join the group within the next months
- → One PhD student so far looking for two more...

A lot to do:

- Work on simulation for HCAL upgrade started
- SUSY analyses to start soon
- DQM and work in CMS center will start with the postdocs

Geant 3 parameters


```
LIST
 TRIGGERS 1000
 DEBUG
 SWIT
         1 0
 HADR 4
 TIME 0. 7. 1
 CUTS 0.0001 0.0001 0.0001 0.0001 0.0001
 ANNI 1
 BREM 1
 COMP 1
 DRAY 1
 LOSS 1
 MULS 2
 MUNU 1
 PAIR 1
 PFIS 0
 PHOT 1
 RAYL 0
 STRA 0
 KINE 2=8. 0.50 0.00 -110.0 0.0 0.0 100.00
END
```


Work from Matthias Stein

- 15.000 π (100 GeV) shot in the middle of tower 3
- Use only events with < 1 GeV in ECAL
- Simple reconstruction using clustering algorithm shown below:

- Define sensitive variable: energy density ρ_F (energy/scintillator layer)
- Plot energy density for each (longitudinal) channel vs cluster energy
- some energy density has different meaning for the different longitudinal channels (because of different number of layers (1-2-2-12)
- Calculate weights from mean energy densities

$$w^{i}(E_{meas}, \rho^{i}) = \frac{\langle E_{true} \rangle}{\langle E_{meas} \rangle}$$