CASTOR calorimeter status report

Igor Katkov

DESY

CMS Hamburg/DESY meeting, 22nd April 2009

Status overview

Outline

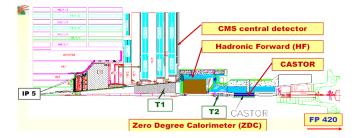
Status overview

- CMS forward calorimeter
- CASTOR design
- CASTOR vs CMS magnetic field
- Mechanics
- Electronics/data acquisition
- Software

Test beam results 2008

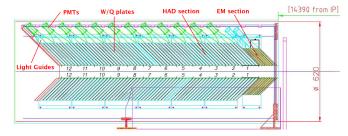
- Electron energy scan
- Pion energy scan
- Pion X-position scan

Physics with CASTOR


- Main topics
- Going low in x
- Physics with 1st pb⁻¹

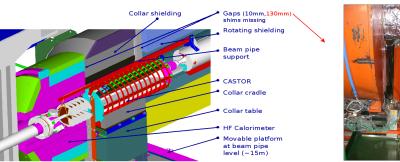
Summary

CMS forward calorimeter



- Forward calorimeter for such topics as low-x parton dynamics, minimum bias event structure, diffraction, cosmic ray related physics in proton- proton and heavy-ion collisions
- Design challenges: restricted space available, high radiation level (< 20 kGy in 2009/10), operation in magnetic field (< 0.16 T)

CASTOR design



- Forward (5.2 $< \eta <$ 6.6) Čerenkov quartz-tungsten sampling calorimeter for CMS@LHC with quartz plates as active medium and tungsten as absorber \rightarrow compact, radhard and fast
- 16 azimuthal sectors (semi-octants) mechanically organised in two half calorimeters; every sector = EM section (2 readout units) + HAD section (12 units); EM = $0.7\lambda_{\rm l} = 20X_{\rm 0}$; HAD = $12*0.7 = 9.24\lambda_{\rm l}$; overall depth = $10\lambda_{\rm l}$

CASTOR vs CMS magnetic field

- Autumn last year: CASTOR in position on beam pipe, tests at P5...but unexpected motions observed...hence de-installed
- Shield gaps, high stray magnetic field (up to 0.7 T vs 0.0010 T according to simulation), field direction varies ($\theta \sim 15-35^{\circ}$)

CASTOR vs CMS magnetic field (cont'd)

Solutions:

Status overview

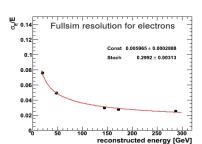
- H1 SpaCal fine-mesh PMT's (tolerate ≤ 0.5 T, should survive radiation corresponding to $\sim 800 \text{ pb}^{-1}$)
- Redesign of air-core light guides to account for field direction
- Close shield gaps (field < 0.16 T)
- Green light for modifications of forward region: Engineering Change Review (end of January 2009)

Mechanics

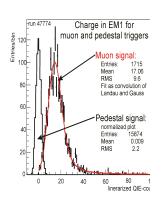

- Both half-calorimeter skeletons designed and produced at DESY (including cooling)
- Light guides redesigned and to be produced by DESY
- Both skeletons now at CERN filled with tungsten and radhard quartz plates (tungsten wrapped with Al/Tyvek, quartz painted to enhance light collection)

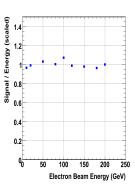
Electronics/data acquisition

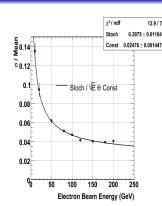
- Front end cards produced at DESY, tested at CERN, stress-tested during test beam 2008
- SpaCal PMT's tested at CERN, PMT bases in production by Moscow State Uni
- Trigger/DAQ card under development in Antwerp, LED system being finalised at ITEP/Moscow



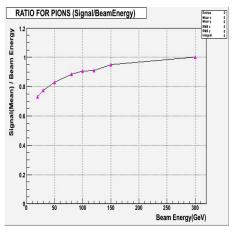
Software

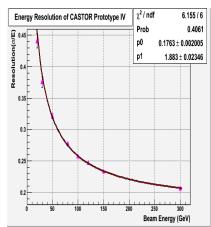

- Full simulation released in CMSSW_3_1_0, (very) fast simulation released even earlier
- Shower library, offline database still need polishing
- Slow control: basic machinery works in test stand installation





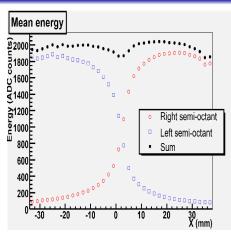
Test beam 2008: muons and electron energy scan

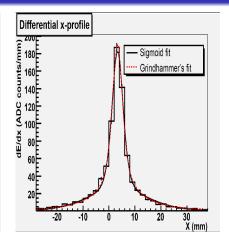




• TB2008: full-length prototype tested with μ , e, π in wide energy range

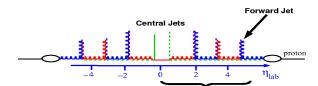
Test beam 2008: pion energy scan





• Čerenkov calorimeter is non-compensating: $e/\pi \sim 2.6$

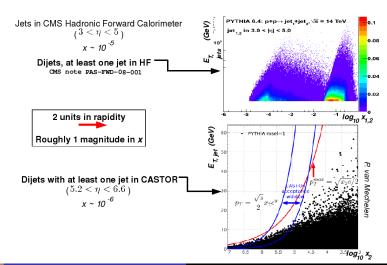
Test beam 2008: pion X-position scan



 \bullet Differential x-profile: Full Width at Half Maximum = 6 mm \rightarrow compact lateral shower size

Physics with CASTOR

- Can do physics with 1st arriving inverse picobarns:
 - Small-x QCD dynamics
 - Multiparton interactions/Underlying event studies
 - Diffraction



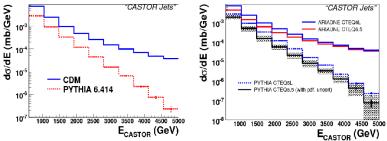
Igor Katkov

Physics with CASTOR

Going low in x

Physics with 1st pb⁻¹

Status overview


-Instead of conventional jet algorithm:

"CASTOR Jets": Jet reconstruction

(most active segment+neighbors)

-Particle energy smeared according to test beam data

-Noise cut of particles (E particles > 1 GeV)

With "CASTOR Jets" we can make measurements that distinguish between the different QCD models (DGLAP/non-DGLAP).

Igor Katkov

- At high energy DGLAP/non-DGLAP separation >> PDF uncertainty/sensitivity
- Study made at < 1pb⁻¹. One of the first topics to be analysis by using CASTOR

Summary

16/16

Summary

- New PMT's call for another week of test beam in May with two equipped octants of one half calorimeter
- On 5th of June two fully equipped half calorimeters to be installed at ground level of P5
- Installation to be followed by magnet tests
- Looking forward to extensive low luminosity pp-physics program

