New ideas (methods) for UHECR propagation

... and the role of efficient computing techniques

Anatoli Fedynitch
DESY Zeuthen

... ._..:..':‘..:.: European Research Council
neLmmoLtz “Jerc

% Supporting top researchers
| ASSOCIATION

from anywhere in the world

Efficient computational codes

> Are you sure that your (computational) research won’t change, if your code would run
instead of 2h/2 min/40 seconds just 2 seconds or tens of milli-seconds?

> Shan Gao’s case: highly optimized code (semi-analytical approximations where needed,
etc.):

= 5 * (few sec) + 2 (few minutes) parameters
= Many “local minima” (evaluation time probably a bit too long for MCMC)
= Need to (pre-)understand physics to set-up proper ranges for grid-scans

= Can not scan all parameters on fine grids, this would require MCPUh/source

> One of the problems: most radiation calculations are single-core or trivially parallel
programs (cluster jobs)

Anatoli Fedynitch | NEUCOS Workshop | 2017/05/31 | Page 2

Moores’ law or what?

> Some manufacturers present outrageous

. . PERFORMANCE SPECIFICATION FOR NVIDIA TESLA P100 ACCELERATORS
numbers of floating point performance for

their hardware products P100 for PCle-Based
Servers
Double-Precision Performance 4.7 TeraFLOPS
Single-Precision Performance I 9.3 TeraFLOPS I
> Can I use th|S SomehOW in my Half-Precision Performance 18.7 TeraFLOPS
calculations?
int IMAX = 100000;

> You can not, if you write something like:
Compiler doesn’t know N-iterations for (int i=0; i < IMAX; ++i){

during compile-time ce

x[i] = calculate_something();

for (int i=0; 1 < get upper_idx(); ++1i){ if (x[i] < 5)

Termination condition depends

. break; int diat It
X[l] - X[l]*X[l] + y[l,l]; else ... on Intermediate resu
. } Usually, a simple branch in the
} loop is enough to not optimize

Anatoli Fedynitch | NEUCOS Workshop | 2017/05/31 | Page 3

Why do we need another propagation code?

Propagation Codes > We (NEUCOS) want to use a self-

consistent source-propagation model

B Multi particle approach - Fokker Planck equations

galactic extragalactic = Nuclear/interaction models
e TransportCR DINT > Flexible and easy to use (by Master/PhD
atOEEoE students)
. + many private codes
PICARD > It has to be super-fast (parameter scans)
B Single particle approach — Particle tracking > Our code is called PriNCe. We develop it
galactic extraga/actic together Wlth J- Helnze.

M—é SimProp > Precursor for development of high-
precision/high-speed non-linear transport

CRT Hermes/EleCa equation solvers

| Slide by David Walz |
(CRPropa 3)

Anatoli Fedynitch | NEUCOS Workshop | 2017/05/31 | Page 4

Propagation of nuclei

Aj;
Solve in comoving YAi(Ey, z) = n
number density ’ (1+2)3
Adiabatic +)(pa-i-|hpm‘du'ction losses

—(1+2)H(2) 0.Y4(Eyn,2) = |A BTy, 2)) + A0y (bet o (BrrasdlY (Ey, 2))

—D 4 (2) Y4 (Ey, 2) + Z /oo dE), pA —A; “(2)Y Y (Ey, 2)

Absorption + ’ Re-injection

Naive approach: Many nuclear species (worst case ~400 up to iron) * ~60 energy bins =
eqgn. system of order 24000

Anatoli Fedynitch | NEUCOS Workshop | 2017/05/31 | Page 5

Reduction of order (semi-analytical approximations)

FAiW(Z)YAi(EN, 2) + Z / dEj\,Fﬁf'y)Ai(z)YAj(EN, 2) Most specie§ wil! decay i.nto more
A, JEN stable nuclei during the first integration
step in redshift

One origin of stiffness 25 - Full (PEANUT)

I Stable

A*
unstable

Ai
stable

Proton number

5 10 15 20 25
Zn-1 Zn Zn+1 Zn+1 : Zn+2 Neutron number

Anatoli Fedynitch | NEUCOS Workshop | 2017/05/31 | Page 6

Parallel, simultaneous computation of rates

T ()Y (Ex,2) + > / AEL TS ()Y By, 2)

o(E) = / N dE'b(E;, E'a(E")
Rates I" have to be recomputed every time the photon density changes: b

En
_ _ _ > AEj b(E;, E})a ZB,,]a,J
(84 absorption + 400 inclusive cross sections (channels)) * iE,
* 60 energy bins ~ 30000 double integrals

Q

For any order of ¢ c=B xd
2 00 2Ee/m 4
Ai—A; _ Imy, n4(€, 2) ' Ai—4;
[y (B z) = 5 E? /ethmp de " /0 de €0y " (€r)
2FE
Use (old QED) trick first and get rid of second integral, g precomputable Well,
(NEUCOSMA employs these methods) matrices ... sure ...
. | write loops
Ai—A; S -
DAY EL) = [dens(e2)g(e B) = (G x 15(2) _obviously

€th

Anatoli Fedynitch | NEUCOS Workshop | 2017/05/31 | Page 7

Ordinary loops and calls to a Linear Algebra library are not the same

Principle of vectorization > We are not computer scientist and we don’t

want to

double *x, *y, *z;
for (i=0; i<n; i++) 2[i] = x[i] + v[i; = spend a significant fraction of life-time to study all
these new technologies/APls

= Look at profiler/optimization reports each time we

S X :
+ wrote a line of code

Y

— X +Y > However, it is much easier to accelerate just
+

matrix expressions (most other techniques
not worth the additional dev time)

> Features you might get:

2-8 Float operations per clock instead of 1 i
P P > Many packages available: MKL, Magma,

= Addition + multiplication in 1 clock instead of 2 CUBLAS/cuSparse
= Coalesced memory access (higher RAM/Cache
FPU bandwidth) It's all just marketing!

SMP (Multicore), easy GPU, ...
Anatoli Fedynitch | NEUCOS Workshop | 2017/05/31 | Page 8 %

Some case...

Should be pretty fast, right?

> This example is brute force
SUBROUTINE MATMULOPT(M, N, DATA, VEC, RES)

INTEGER M, N, I, J

DOUBLE PRECISION DATA(10000,10000) > Run on a tablet, workstation typically more
DOUBLE PRECISION VEC(10000), RES(10000) i . .
' intent(out) :: RES > Linear algebra has many interesting features

DO J=1,N (sparse matrices, efficient solvers, etc.)

DO I=1,M

RES(J) = DATA(I,J)*VEC(I) + RES(3J)

END DO

END DO We"’

... great ...
m,n, data, vec = 2] but my “matrices” are neither
random, nor dense!

END

dataf = np.asfortranarray(data)

vect = np.asfortranarray(vec)

%timeit fortrantest.matmulopt(m,n,dataf,vect)
10 loops, best of 3: 130 ms per loop

7 %timeit np.dot(data.T, vec)
10 loops, best of 3: 35.4 ms per loop

gfortran-7 -O3 vs. numpy linked to Intel MKL
Anatoli Fedynitch | NEUCOS Workshop | 2017/05/31 | Page 9

More realistic case: propagation coupling matrix

% P R AR AN W AKX A0 AN A O A0 A0 A0 AD g* D AL A
NN AN N M) A M M A A R MNP R A e

B B =I T . . 3 e . B 3
EN TR I N BN A) 1 Y

RERBVRNRGNE RN
N NN N NN YL N L

> |Ds: A*100 + Z

,L'LQ% 1 In [39]: eg.coupling mat.shape l’epl’esents an mJeCt'On
2 m&_ densities = np.random.random(eg.coupling mat.shape[@])
g ,i\“} |
%a)&q’] In [40]: %timeit eg.coupling mat.dot(densities)
S A
5 . ,
e 10 loops, best of 3: 57 ms per loop S are rows
N
2
io)g@ 1 In [41]: from scipy.sparse import csr_matrix
‘é"@ - sp_coupling mat = csr_matrix(eg.coupling mat)
8l 5 1 nts are columns
bfo”:_ In [44]: %timeit sp_coupling mat.dot(densities)
AV
:q\ga . 10000 loops, best of 3: 121 us per loop elelglV/=lgi=leflolsior] (<l
6&“‘ | WkJen]] CHIANTIEIS UL HOIIISI) ISULOPES
5 2l (1n, 2n, 1n1p emissions etc.)
6& _

B " Primary (interacting) nucleus
Anatoli Fedynitch | NEUCOS Workshop | 2017/05/31 | Page 10

> Since we already write numerical code, we shall consider to directly think in addition and
multiplication, and not in integral, derivative

> Radiation transport problems are in most cases sparse problems
> Calls to special functions (like pow(x,y)) are very expensive, interpolation is expensive,....

> Formulating the kernel of you problem in algebraic expressions gives you a lot of performance for
free, vectorization doesn’t simply become marketing or impossible to afford due to dev time

> You can use GPUs, multi-core, etc., and if you need performance, you probably should, since
CPU’s won't accelerate much in the next decade

> By solving ultra-efficiently (in few seconds) the UHECR propagation problem, we will be able to do

some fancy studies (part of the next workshop ;)
Anatoli Fedynitch | NEUCOS Workshop | 2017/05/31 | Page 11

Semi-analytical approximations in matrix notations

)\dec < tmi:c)\int)\dec Z tmz’m)\z’nt 2 chained N
B T A Pchained _ HDres A DAX
B = (B, - By | Dy - DY) nt1 1D CAin®AX,
=0
treat as transport as
resonance particle

[o
Result: removing fast processes from Eo
the system -> reduction of stiffness Fast cooling of ,
. : 8 Fast cooling of
Sy seondar
secondary y
320 - all hadrons (I)gb
—— res. approx. E;
¢
(I)Ei+1
Slow cooling of
primary &
secondary
¢
\ 22,

Anatoli Fedynitch | NEUCOS Workshop | 2017/05/31 | Page 12

