
New ideas (methods) for UHECR propagation

… and the role of efficient computing techniques

Anatoli Fedynitch
DESY Zeuthen

Anatoli Fedynitch | NEUCOS Workshop | 2017/05/31 | Page 2

Efficient computational codes

> Are you sure that your (computational) research won’t change, if your code would run
instead of 2h/2 min/40 seconds just 2 seconds or tens of milli-seconds?

> Shan Gao’s case: highly optimized code (semi-analytical approximations where needed,
etc.):
§ 5 * (few sec) + 2 (few minutes) parameters

§ Many “local minima” (evaluation time probably a bit too long for MCMC)

§ Need to (pre-)understand physics to set-up proper ranges for grid-scans

§ Can not scan all parameters on fine grids, this would require MCPUh/source

> One of the problems: most radiation calculations are single-core or trivially parallel
programs (cluster jobs)

Anatoli Fedynitch | NEUCOS Workshop | 2017/05/31 | Page 3

Moores’ law or what?

> Some manufacturers present outrageous
numbers of floating point performance for
their hardware products

> Can I use this somehow in my
calculations?

> You can not, if you write something like:

Termination condition depends
on intermediate result

Compiler doesn’t know N-iterations
during compile-time

Usually, a simple branch in the
loop is enough to not optimize

Anatoli Fedynitch | NEUCOS Workshop | 2017/05/31 | Page 4

Why do we need another propagation code?

Slide by David Walz
(CRPropa 3)

> We (NEUCOS) want to use a self-
consistent source-propagation model
§ Nuclear/interaction models

> Flexible and easy to use (by Master/PhD
students)

> It has to be super-fast (parameter scans)

> Our code is called PriNCe. We develop it
together with J. Heinze.

> Precursor for development of high-
precision/high-speed non-linear transport
equation solvers

Anatoli Fedynitch | NEUCOS Workshop | 2017/05/31 | Page 5

Propagation of nuclei

Adiabatic + pair-production losses

Absorption + Re-injection Injection
from

sources

Solve in comoving
number density

Naïve approach: Many nuclear species (worst case ~400 up to iron) * ~60 energy bins =
eqn. system of order 24000

Anatoli Fedynitch | NEUCOS Workshop | 2017/05/31 | Page 6

Reduction of order (semi-analytical approximations)

Most species will decay into more
stable nuclei during the first integration
step in redshift

Zn-1 Zn Zn+1 Zn+1 Zn+2

Ai

stable
Aj

stable

A*
unstable

One origin of stiffness

Anatoli Fedynitch | NEUCOS Workshop | 2017/05/31 | Page 7

Parallel, simultaneous computation of rates

Rates G have to be recomputed every time the photon density changes:

(84 absorption + 400 inclusive cross sections (channels)) *
* 60 energy bins ~ 30000 double integrals

Simple convolution as matrix expression

For any order of c

Use (old QED) trick first and get rid of second integral, g precomputable
(NEUCOSMA employs these methods)

Well,
matrices … sure …
I write loops
…obviously

Anatoli Fedynitch | NEUCOS Workshop | 2017/05/31 | Page 8

Ordinary loops and calls to a Linear Algebra library are not the same

> We are not computer scientist and we don’t
want to
§ spend a significant fraction of life-time to study all

these new technologies/APIs

§ Look at profiler/optimization reports each time we
wrote a line of code

> However, it is much easier to accelerate just
matrix expressions (most other techniques
not worth the additional dev time)

> Many packages available: MKL, Magma,
CUBLAS/cuSparse

Principle of vectorization

> Features you might get:
§ 2-8 Float operations per clock instead of 1

§ Addition + multiplication in 1 clock instead of 2

§ Coalesced memory access (higher RAM/Cache
FPU bandwidth)

§ SMP (Multicore), easy GPU, …
It’s all just marketing!

Anatoli Fedynitch | NEUCOS Workshop | 2017/05/31 | Page 9

Some case…

Should be pretty fast, right?

> This example is brute force

> Run on a tablet, workstation typically more

> Linear algebra has many interesting features
(sparse matrices, efficient solvers, etc.)

gfortran-7 -O3 vs. numpy linked to Intel MKL

Well,
… great …
but my “matrices” are neither
random, nor dense!

Anatoli Fedynitch | NEUCOS Workshop | 2017/05/31 | Page 10

More realistic case: propagation coupling matrix

> IDs: A*100 + Z

> Each element represents an injection
rate

> Interacting elements are rows

> Ejected elements are columns

All possible disintegration
channels of iron(ish) isotopes
(1n, 2n, 1n1p emissions etc.)

considered as dense

converted to sparse

Anatoli Fedynitch | NEUCOS Workshop | 2017/05/31 | Page 11

Summary

> Since we already write numerical code, we shall consider to directly think in addition and
multiplication, and not in integral, derivative

> Radiation transport problems are in most cases sparse problems

> Calls to special functions (like pow(x,y)) are very expensive, interpolation is expensive,….

> Formulating the kernel of you problem in algebraic expressions gives you a lot of performance for
free, vectorization doesn’t simply become marketing or impossible to afford due to dev time

> You can use GPUs, multi-core, etc., and if you need performance, you probably should, since
CPU’s won’t accelerate much in the next decade

> By solving ultra-efficiently (in few seconds) the UHECR propagation problem, we will be able to do
some fancy studies (part of the next workshop ;)

Anatoli Fedynitch | NEUCOS Workshop | 2017/05/31 | Page 12

Semi-analytical approximations in matrix notations

Result: removing fast processes from
the system -> reduction of stiffness Fast cooling of

primary &
secondary

Fast cooling of
seondary

Slow cooling of
primary &
secondary

