Model-dependent assumptions for the multi- collision model

Annika Rudolph DESY, Zeuthen

NeuCos Workshop May 30, 2017

Multi- zone collision model

Astrophys. J., 837, 33 (2017)

Ultraefficient shocks

Kobayashi, S. & Sari R.
 2001, Astrophys. J., 551,
 934 (KS'01)

TABLE 1 EVALUATION OF EFFICIENCY

N	γ_{\min}	γ_{\max}	Efficiency $(\epsilon_e = 0.1)$ $(\%)$	Efficiency $(\epsilon_e = 0.5)$ $(\%)$
30 30 10 ²	10 ² 10 10 ² 10	10 ³ 10 ⁴ 10 ³ 10 ⁴	9.2 ± 2.3 40.0 ± 9.2 15.1 ± 1.5 62.9 ± 4.8	16.2 ± 3.0 67.5 ± 9.3 17.7 ± 1.5 72.4 ± 4.3

Taken from KS '01, assuming initially equal masses

Now... how do we set it up?

- Aim : Make it comparable to the standard multi zone collision model
- Idea: Lightcurves should resemble one another + same basic features of the system

Now... how do we set it up?

- Aim : Make it comparable to the standard multi zone collision model
- Idea: Lightcurves should resemble one another + same basic features of the system

What changes?

Optical depth

Optical depth

Collision radii

Merging shells

Reflecting shells

- Less collisions at small radii
- More collisions at large radii (releasing less energy)

Particle production

But how well supported is the model?

Hydrodynamic simulations

PLUTO : finite-volume / finite-difference, shock capturing code integrating a system of conservation laws → numerical solutions for high Mach number flows in fluid dynamics

http://plutocode.ph.unito.it/

- Assumptions:
 - (1) no radiative cooling
 - (2) cold plasma shells initially
 - (3) shells move with relativistic speeds
 - (4) no magnetic fields

Hydrodynamic system

Setup: identical to KS '01

$$\Gamma_s = 10$$

$$\Gamma_r = 1000$$

$$\Delta_s = \Delta_r$$

$$m_s = m_r$$

$$\Gamma_{CD} \simeq 33$$

$$t_0 = 0.83 s$$

Setup: identical to KS '01

$$\Gamma_{\rm s}=10$$

$$\Gamma_r = 1000$$

$$\Lambda = \Lambda$$

Behavior can be reproduced, but shell spreading cannot be neglected.

→ How robust is the model?

Setup: Identical to KS '01, but equal energy

$$\Gamma_{\rm s} = 10$$

$$\Gamma_r = 1000$$

$$\Delta_s = \Delta_r$$

$$E_s = E_r$$

$$\Gamma_{CD} \simeq 14$$

$$\Gamma_{CD} \simeq 14$$
 $t_0 = 1,4 s$

Setup: Identical to KS '01, but equal energy

$$\Gamma_s = 10$$

$$\Gamma_r = 1000$$

$$\Delta_{s} = \Delta_{r}$$

Dependency on:

- Lorentz Factors of shells
- Relative densities
- > Time between collisions

What could be reasonable parameters?

Current model parameters

Equal energy - case

Time between collisions

Distribution of Lorentz- Factors Merging shells

Current model parameters

Equal energy - case

Time between collisions

Distribution of Lorentz- Factors Reflecting shells

Combine with PLUTO simulations

$$E_s = E_r$$

$$\Gamma_s = 10$$

$$\Gamma_r = 580$$

Possible Parameters:

Maximum density

Mean density # of maxima

Combine with PLUTO simulations

Maximum densities

After 200 s in the CD frame

After 1000 s in CD frame

Combine with PLUTO simulations

Maximum densities

After 200 s in the CD frame

After 1000 s in CD frame

... so whats the conclusion?

- Reflecting shells unlikely
- At least some of the shells will disappear after the collision

Future prospects:

- Benchmark models
- Peak finder → merging / reflecting shells
- Include radiative cooling / magnetic fields
- Limit particle acceleration / radiation on mildly relativistic shocks
- Couple multi- collision model to hydrodynamic simulations → each collision is treated individually by PLUTO

