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Why look for new physics in HE astro. ν’s?

I The highest energies (∼ PeV)
— Probe physics at new energy scales

I The longest baselines (∼ Gpc)
— Tiny effects can accumulate and become observable

I It comes for free
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The new-physics reach of HE astrophysical ν’s

If new-physics effects are ∼ κEnL (with κ its strength), we can probe

κ ∼ 4 · 10−47
(

E
PeV

)−n( L
Gpc

)−1

PeVn+1

(Current limits: . 10−30 PeV)

[BARENBOIM, QUIGG, PRD 67, 073024 (2003)]
[BEACOM, BELL, HOOPER, PAKVASA, WEILER, PRL 90, 181301 (2003)]
[MALTONI, WINTER, JHEP 07, 064 (2008)]
[BAERWALD, MB, WINTER, JCAP 1210, 020 (2012)]
[PAGLIAROLI, PALLADINO, VILLANTI, VISSANI, PRD 92, 113008 (2015)]
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The new ν physics tensor

Where it happens?
At source During propagation At detection

Spectrum Matter effects New interactions,
sterile neutrinos New resonances

Direction DM decay /
annihilation

New ν-N,
ν-DM interactions

Anomalous ν
magnetic moment

W
ha

ti
tc

ha
ng

es
?

Flavor
ratios Matter effects ν decay, sterile ν,

new operators
Non-standard
interactions

How is the new physics introduced?↗

[ARGÜELLES, BUSTAMANTE, CONRAD, KHEIRANDISH, VINCENT, In prep.]
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New physics in the spectral shape: ν–ν interaction

Secret neutrino interactions between
astrophysical neutrinos and the
cosmic neutrino background:

Cross section:

σ =
g4

4π
s

(s − M2)2 + M2Γ 2

Resonance at
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[NG & BEACOM, PRD 6, 065035 (2014)]
[CHERRY, FRIEDLAND, SHOEMAKER, 1411.1071]
[BLUM, HOOK, MURASE, 1408.3799]

L ∼ gφνν̄
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New physics in the angular dist.: ν–N interaction

HESE angular distribution is compatible with SM ν–N cross sections —
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Limits deviations at Ecm ' 0.4 − 2 TeV (vs. ∼ 25 GeV man-made)
[CONNOLLY, THORNE, WATERS, PRD 2011 [1102.0691]]

[BUSTAMANTE & CONNOLLY, In prep.]
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New physics in the angular dist.: ν–DM interaction

Interaction between astrophysical neutrinos and the Galactic DM profile:

Galactic

21.3 23log10(ρDM/GeVcm−2) 0 15 30 45 60 75
0
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Expected: fewer events towards the Galactic Center

Observed: Isotropy

[ARGÜELLES et al. 1703.00451]
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New physics in the flavor composition
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How does IceCube see neutrinos?

Two types of fundamental interactions:

Charged-current
νl + N → l + hadrons

Neutral-current
νl + N → νl + hadrons

Two event topologies (below Eν ∼ 5 PeV):

Showers
Made by CC νe or ντ; or by NC νx

Tracks
Made mainly by CC νµ

these shower and make light

100’s m 100’s m
few km

Bad angular resolution (10’s deg) Good angular resolution (< deg)
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Flavor ratios — at the sources

pγ→ ∆+(1232)→ π+n π+ → µ+νµ → e+νeν̄µνµ

Flavor ratios at the source: (fe : fµ : fτ)S ≈ (1/3 : 2/3 : 0)
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Flavor ratios — at Earth

best-fit mixing params. NH−−−−−−−−−−−−−−−→

(1/3 : 2/3 : 0)S
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Flavor ratios — at Earth

mixing params. @ 1σ−−−−−−−−−−−−→

(1/3 : 2/3 : 0)S
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Flavor ratios — at Earth

mixing params. @ 3σ−−−−−−−−−−−−→

(1/3 : 2/3 : 0)S
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Flavor composition — standard allowed region

Mixing params. @ b.f, 1σ, 3σ−−−−−−−−−−−−−−−→

All possible source flavor ratios

experiment: e-τ degeneracy

Std. mixing can access only ∼ 10% of the possible combinations

MB, BEACOM, WINTER, PRL 115, 1611302 (2015)
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IceCube analysis of flavor composition

Using contained events + throughgoing muons:

I Best fit: (fe : fµ : fτ)⊕ = (0.49 : 0.51 : 0)⊕
I Compatible with standard source compositions
I Bounds are weak – need more data and better flavor-tagging

ICECUBE COLL., ApJ 809, 98 (2015)
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IceCube vs. IceCube-Gen2

(Borrowed from M. Kowalski, Weizmann 2017)
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Energy dependence of the composition at the source

Different ν production channels are accessible at different energies
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I TP13: pγ model, target photons from co-accelerated electrons
[HÜMMER et al., Astropart. Phys. 34, 205 (2010)]

I Will be difficult to resolve
[KASHTI, WAXMAN, PRL 95, 181101 (2005)] [LIPARI, LUSIGNOLI, MELONI, PRD 75, 123005 (2007)]

MB, BEACOM, WINTER, PRL 115, 1611302 (2015)
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Energy dependence in IceCube-Gen2

(Borrowed from M. Kowalski, Weizmann 2017)
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Two classes of new physics

I Neutrinos propagate as incoherent mix of ν1, ν2, and ν3

I Each has a different flavor content:

I The flavor ratios at Earth are the result of their combination

I New physics may
1 Only reweigh the proportion of each νi reaching Earth (e.g., decay)
2 Redefine the propagation states (e.g., Lorentz-invariance violation)

w1( )+w2( )+w3( )
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Region of flavor ratios accessible with decay

Region of all linear combinations of ν1, ν2, ν3:

What kind of NP lives outside?
Let us see a few examples

Decay can access only ∼ 25% of the possible combinations

MB, BEACOM, WINTER, PRL 115, 1611302 (2015)
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New physics — of the truly exotic kind

What kind of NP lives outside the blue region?

I NP that changes the values of the mixing parameters, e.g.,
I violation of Lorentz and CPT invariance

[BARENBOIM, QUIGG, PRD 67, 073024 (2003)] [MB, GAGO, PEÑA-GARAY, JHEP 1004, 005 (2010)]

I violation of equivalence principle
[GASPERINI, PRD 39, 3606 (1989)] [GLASHOW et al., PRD 56, 2433 (1997)]

I coupling to a torsion field
[DE SABBATA, GASPERINI, Nuovo. Cim. A65, 479 (1981)]

I renormalization-group running of mixing parameters
[MB, GAGO, JONES, JHEP 1105, 133 (2011)]

I active-sterile mixing [AEIKENS et al., JCAP 10, 1510 (2015)] [BRDAR et al., 1611.04598]

I flavor-violating physics
I ν–ν̄ mixing (if ν, ν̄ flavor ratios are considered separately)
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New physics — high-energy effects (I)

Add a new-physics term to the standard oscillation Hamiltonian:

Htot = Hstd + HNP

Hstd =
1

2E
U†PMNS diag

(
0,∆m2

21,∆m2
31
)

UPMNS

HNP =
∑

n

(
E
Λn

)n

U†n diag (On,1, On,2, On,3)Un

n = 0
I coupling to a torsion field
I CPT-odd Lorentz violation

O0 . 10−23 GeV

n = 1
I equivalence principle violation
I CPT-even Lorentz violation

O1/Λ1 . 10−27 GeV

[ARGÜELLES, KATORI, SALVADÓ, PRL 115, 161303 (2015)]
[MB, GAGO, PEÑA-GARAY, JHEP 1004, 005 (2010)]
[ICECUBE COLL., PRD 82, 112003 (2010)]
[SUPER-K COLL., PRD 91, 052003 (2015)]

Experimental upper bounds from atmospheric ν’s:
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New physics — high-energy effects (II)

Truly exotic new physics is indeed able to populate the white region:
I use current bounds on On,i
I sample the unknown NP mixing angles

n = 0
(similar for n = 1)

[ARGÜELLES, KATORI, SALVADÓ
PRL 115, 161303 (2015)]
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Tasting complete decay
ν2,ν3 → ν1︸ ︷︷ ︸

ν1 lightest (normal hierarchy)

ν1,ν2 → ν3︸ ︷︷ ︸
ν3 lightest (inverted hierarchy)

Complete decay: only ν1 or ν3 reach Earth, so fα,⊕ =

{
|Uα1|

2 , for NH
|Uα3|

2 , for IH

ν1
lightest

−−−−
−−−−

−−−−
−−−→

ν
3 lightest

−−−−−−−−−−−−−−−→

Source

Earth
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Sensitivity to decay using IceCube flavor contours

Complete decay IH I

J Complete decay NH

Disfavored at > 2σ

This leads to an improved lifetime sensitivity in the NH case I
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Improved lifetime sensitivity in the NH
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How to do better?

Achievable now:

Use flavor contours built with only high-energy events
off the Galactic Plane

Achievable in the near future:

I More events
I Improved flavor reconstruction
I Better energy resolution (useful for incomplete decay)
I Smaller uncertainties in mixing parameters
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How to improve νe vs. ντ separation?

Late-time light (“echoes”) from muon decays and neutron captures is larger in
hadronic than in e.m. showers —

LI, MB, BEACOM, 1606.06290
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How to improve νe vs. ντ separation?
Using 100 showers of 100 TeV (assuming high efficiency):

Central value
1s, 100 sh.

For fe,⊕ = ft,⊕ :

fm,⊕ft,⊕
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std. mixing
MaximalIceCube 2015

1s
2s

3s

Using echoes: ∼ ×9 improvement over current flavor contours

LI, MB, BEACOM, 1606.06290
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Outlook

I Sensitive new-physics tests can be performed already with current data

I Proposed upgrades (IceCube-Gen2, KM3NeT) will provide more data

I New-physics tests feasible only with diffuse flux, not point-source fluxes

I Better flavor separation would help, e.g., muon and neutron echoes

I Next frontier: cosmogenic neutrinos — new physics at the EeV scale
(GRAND!)
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TeVPA 2017
tevpa2017.osu.edu

I August 7–11, Columbus, OH

I Deadline for registration and
abstract submission: June 2

I Pre-meeting mini-workshops
on Sunday, August 7

I Ample room for parallels:
we welcome your talks!

30
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Backup slides
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Joint production of UHECRs, ν’s, and γ’s

p γ → ∆+ (1232)→
{

nπ+ , BR = 1/3
pπ0 , BR = 2/3

π+ → µ+νµ → ν̄µe+νeνµ

π0 → γγ

n (escapes)→ pe−ν̄e CR

γ

ν

neutrino energy ' proton energy / 20

neutrino energy ' gamma-ray energy / 2

E.g., 20-PeV protons could make PeV neutrinos and gamma rays

power law ∼ E−2 e.g., broken power law

32



Flavor content of the mass eigenstates

Flavor content for every allowed combination of mixing parameters:

|Uαi|
2 = |Uαi (θ12, θ23, θ13, δCP)|

2

MB, BEACOM, WINTER, PRL 115, 161302 (2015)
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Flavor mixing in high-energy astrophysical neutrinos

Probability of να → νβ transition:

Pαβ = δαβ − 4
∑
k>j

Re
(
UαjU∗αkUβjU∗βk

)
sin2

(
∆m2

kjL

4E

)
+ 2
∑
k>j

Im
(
UαjU∗αkUβjU∗βk

)
sin

(
∆m2

kjL

2E

)

For
{

Eν ∼ 1 PeV
∆m2

kj ∼ 10−4 eV2 ⇒ Losc ∼ 10−10 Mpc︸ ︷︷ ︸
high-energy osc. length

� L = 10 Mpc − few Gpc︸ ︷︷ ︸
typical astrophysical baseline

I Therefore, oscillations are very rapid
I They average out after only a few oscillations lengths:

sin2 (. . .)→ 1/2 , sin (. . .)→ 0

Hence, for high-energy astrophysical neutrinos:

〈Pαβ〉 =
3∑

i=1

|Uαi|
2|Uβi|

2 J incoherent mixture of mass eigenstates
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Flavor ratios — at Earth

Due to flavor mixing: fα,⊕ =
∑
β

〈Pβα〉fβ,S =
∑
β

(
3∑

i=1

|Uαi|
2|Uβi|

2

)
fβ,S

(1/3 : 2/3 : 0)S
Best-fit mixing params. NH−−−−−−−−−−−−−−−→ (0.36 : 0.32 : 0.32)⊕

Mixing params. @ b.f.,1σ,3σ−−−−−−−−−−−−−−−−−→
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Embracing our ignorance

We ignore or do not know perfectly the two key ingredients —

Flavor ratios at the source

0 6 fe,S 6 1

0 6 fµ,S 6 1 − fe,S

0 6 fτ,S 6 1 − fe,S − fµ,S

Mixing parameters

0 10 20 30 40 50 60
θ ij [°]

NH

IH

NH

IH

NH

IH

θ12

θ23

θ13
2015
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Selected source compositions

We can look at results for particular choices of ratios at the source:

challenging to tell them apart

(1:0:0) disfavored at 2σ

MB, BEACOM, WINTER, PRL 115, 1611302 (2015)
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Perfect knowledge of mixing angles

In a few years, we might know all the mixing parameters except δCP:

MB, BEACOM, WINTER, PRL 115, 1611302 (2015)

38



Standard Model decay modes

SM decay rates are negligible:

I One-photon decay (νi → νj + γ):

τ ' 1036 (mi/eV)−5 yr

I Two-photon decay (νi → νj + γ+ γ):

τ ' 1057 (mi/eV)−9 yr

I Three-neutrino decay (νi → νj + νk + ν̄k):

τ ' 1055 (mi/eV)−5 yr

All lifetimes� age of Universe
Hopeless to look for effects of SM decay channels
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One-photon radiative decay

I Tree-level suppressed by GIM mechanism (i.e., it has FCNCs)
I One-loop diagrams:

I For νi 6= νj, the decay rate is

Γ =
α

2

(
3GF

32π2

)2
(

m2
i − m2

j

mi

)2 (
m2

i + m2
j
) ∣∣∣∣∣∣
∑

l=e,µ,τ

UliU∗lj

(
ml

mW

)2
∣∣∣∣∣∣

I Taking Uτi ∼ O (1) and mi = 1 eV � mj yields a lifetime of

τ ∼ 1036 yr� 13.8 · 109 yr (age of the Universe)

dominated by l = τ (mτ � mµ � me)
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New neutrino decay modes

I Standard Model: ν lifetime is 1036–1055 yr� age of Universe

I Models beyond the SM may introduce new decay modes:

νi → νj + φ

I φ: Nambu-Goldstone boson of a broken symmetry
E.g., Majoron [CHIKASHIGE+ 1980, GELMINI+ 1982, TOMAS+ 2001, HANNESTAD & RAFFELT 2005]

I Nature of φ unimportant as long as invisible to neutrino detectors
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Decay in the flavor ratios

fα,⊕ (E0, z, τi/mi) =
∑

β=e,µ,τ

(
3∑

i=1

|Uαi|
2 ∣∣Uβi

∣∣2 D (E0, z, τi/mi)

)
fβ,S

(Note — NH: τ1/m1 →∞ ; IH: τ3/m3 →∞)

Complete decay (D� 1) —

Flavor ratios equal the flavor content of ν1 (NH) or ν3 (IH):

fα,⊕ =

{
|Uα1|

2 , for NH
|Uα3|

2 , for IH

fraction of νi that reach Earth
H

BAERWALD, MB, WINTER, JCAP 1210, 020 (2012)
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Lifetime limits and sensitivities

Decay rates depend on the factor exp
(
−

t
γτ

)
= exp

(
−

L
E
× m
τ

)
ν2,ν3 → ν1 or ν1,ν2 → ν3
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Decay and the Glashow resonance

The ν̄e flavor can be probed individually via the Glashow resonance:

ν̄e(6.3 PeV) + e→ W → hadrons

106 107

Shower energy Esh [GeV]
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Complete decay NH

No decay NHNo decay IH
Complete decay IH

(All-flavor να + ν̄α flux normalized to IceCube combined-likelihood flux.)
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NH: lifetime sensitivity with current IceCube data

Find the value of D so that decay is complete, i.e., fα,⊕ = |Uα1|
2, for

I Any value of mixing parameters; and
I Any flavor ratios at the sources

Assume equal lifetimes of ν2, ν3

↙ Fraction of ν2, ν3 remaining at Earth
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NH: lifetime sensitivity with current IceCube data

Find the value of D so that decay is complete, i.e., fα,⊕ = |Uα1|
2, for

I Any value of mixing parameters; and
I Any flavor ratios at the sources

Assume equal lifetimes of ν2, ν3

J fα,⊕ = |Uα1|
2 when D . 0.01

↙ Fraction of ν2, ν3 remaining at Earth
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IH: probing lifetime with high-energy showers

If 1 5–8 PeV shower is seen in 5 yr: τ1/m1, τ2/m2 & 10 s eV−1 at 2σ
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MB, BEACOM, MURASE, PRD 2017 [1610.02096]
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Shower spectrum components
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New physics — active-sterile mixing
Mixing with a sterile neutrino (3+1) changes the flavor ratios:

I standard parameters: θ12, θ23, θ13, δ13
I sterile parameters: θ14, θ24, θ34, δ24, δ34

Bounds from
T2K, SK,
Daya Bay

[MB, COLOMA]
See also [BRDAR, KOPP, WANG 2016]

Bounds are too
strong for large
deviations
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New physics — SUSY renormalization group running
I The MSSM introduces loop corrections in the ν interaction vertices
I Renormalization scale µ = Q =

√
−q2 (transferred momentum)

I Two energy scales:
I At production: Q = mπ
I At detection (via ν-nucleon): Q ∝

√
Eν

I RG running between scales changes the mixing probability:

〈Pαβ〉 =
3∑

i=1

|(UPMNS)αi|
2
∣∣∣(U′ (Q))βi
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[MB, GAGO, JONES, JHEP 05, 133 (2011) [1012.2728]]
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