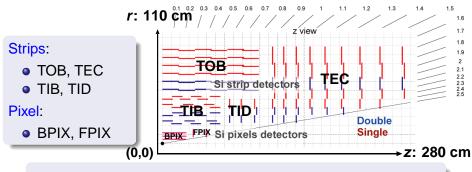
Tracker Alignment: Introduction

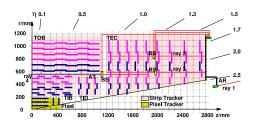
Gero Flucke


CMS Hamburg Meeting June 3rd, 2009

Outline

- The CMS Tracker
- Track-Based Alignment Principle
- Alignment within CMS Alignment/Calibration Workflows
- Hamburg Involvement

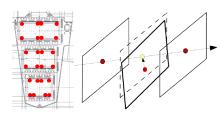
The CMS Silicon Tracker: ¹/₄-Cross Section



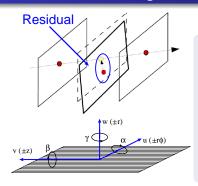
- 15148 silicon strip moduls: $\sigma \approx$ 23 60 μm ($r\phi$)
 - 2D measurements by stereo moduls (∠ = 100 mrad)
- 1440 silicon pixel moduls: $\sigma \approx 9 \times 10 35 \ \mu m \ (r\phi \times z)$

Alignment Challenge:

- Precision < resolution σ : μ m on distances $\mathcal{O}(m)$.
- $16588 \times 6 \approx 100000$ rigid body parameter.


Input to Alignment

- Survey Measurements
- Laser Alignment System (LAS)
- Track Based Alignment


Combination desirable!

- Millepede (global)
- HIP (iterative)
- Kalman (sequential/global)

Track-Based Alignment with Millepede II

- Mis-positioned detector modules increase residual track
 ⇔ hit.
- Minimise simultaneously residuals of many tracks:

$$\chi^2(oldsymbol{ au},oldsymbol{
ho}) = \sum_{j=1}^{N_j tracks} \sum_{i=1}^{N_j hits} \left(rac{m_{ij} - f_j(oldsymbol{ au}_j,oldsymbol{
ho})}{\sigma_{ij}}
ight)^2$$

- τ_j: Parameters of track j
 - \Rightarrow appear only for hits of track $j \Rightarrow$ local parameters
- p: Alignment parameters p
 - e.g. six rigid-body parameters of a silicon module
 - ⇒ can appear in all data ⇒ global parameters
- Linearising $f_j(\tau_j, \mathbf{p}) \Rightarrow$ redefine τ_j/\mathbf{p} as small corrections to τ_j^*/\mathbf{p}^* .

Millepede: Combined Fit of Local/Global Parameters

Normal Equations

$$\sum_{j} rac{1}{\sigma_{j}} (oldsymbol{d}_{j} \cdot oldsymbol{d}_{j}^{T}) \cdot oldsymbol{a} = \sum_{j} rac{1}{\sigma_{j}} m_{j} oldsymbol{d}_{j}$$

•
$$a = (p, \tau_1, \dots, \tau_n)^T$$

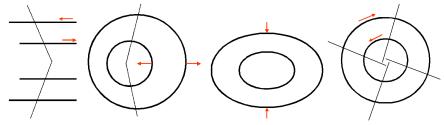
- alignment ("global") parameters p
- track ("local") parameters τ_i of all n tracks
- Coefficients (i.e. derivatives): $\mathbf{d}_j = (\mathbf{d}_j^p, \underbrace{\mathbf{d}_j^{\tau_1}}_{=\mathbf{0}}, \dots, \underbrace{\mathbf{d}_j^{\tau_j}}_{=\mathbf{0}}, \dots, \underbrace{\mathbf{d}_j^{\tau_n}}_{=\mathbf{0}})^T$

$\sum_k \mathbf{c}_k^{ ext{global}}$		$H_k^{ m global-local}$	•••	
:	٠	0	0	
$(\boldsymbol{H}_k^{ ext{global-local}})^T$	0	C _k local	0	
:	0	0	·	

p		$\left(\sum_{k} \boldsymbol{b}_{k}^{\mathrm{global}}\right)$
		. ——— .
:	=	:
$oxed{ au_k}$		b local
:		:
\	4 厘	\ = \ = \

Millepede Principle: Matrix Reduction

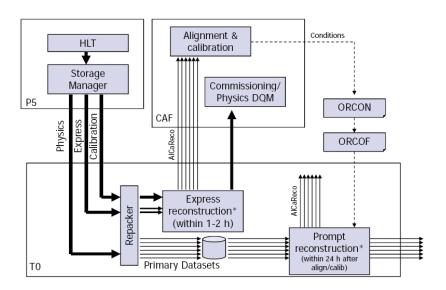
- We are not interested in full $\mathbf{a} = (\mathbf{p}, \tau_1, \dots, \tau_n)^T$: \Rightarrow We want global parameters \mathbf{p} only!
- Matrix algebra (inversion by partitioning) helps:


Reduced Matrix

$$m{C'p} = m{b'}$$
 $m{C'} = \sum_{j} m{C}_{j}^{global} - \sum_{j} \left(m{H}_{j} (m{C}_{j}^{local})^{-1} m{H}_{j}^{T} \right)$
 $m{b'} = \sum_{j} m{b}_{j}^{global} - \sum_{j} m{H}_{j} \underbrace{(m{C}_{j}^{local})^{-1} m{ au}_{j}}_{\text{local solution}}$

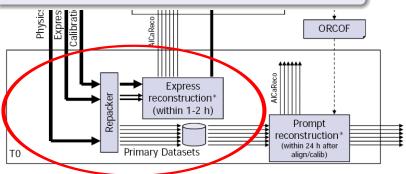
- Sums built while running over tracks k.
- Inversion of small matrices C_k^{local} only.
- C' is "small" $n \times n$ matrix for n global (alignment) parameters.

The Real Problem: Distortions


Minimising residuals can be insensitive to certain global distortions.

(There are more less obvious modes!)

- Intrinsic to problem, independent of method.
- Biases measurements.
- Dependent on data fed into matrix.
- ⇒ Combine different sources of information.


Prompt Alignment/Calibration Workflow: The Scene

Prompt Alignment/Calibration Workflow: T0

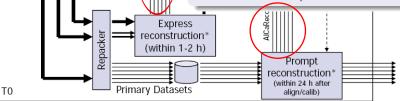
Tier-0 (T0): Offline Production at CERN (Meyrin)

- Repack into "Event Data Model" format: Datasets according to HLT.
- Buffer bulk of data on disk.
- $\mathcal{O}(10\text{-}20\%)$ Express Reconstruction.
 - ⇒ Alignment and Calibration Skims (AlCaReco) for Monitoring and Short Latency Calibration.

Prompt Alignment/Calibration Workflow: AlCaReco

Alignme

calibra

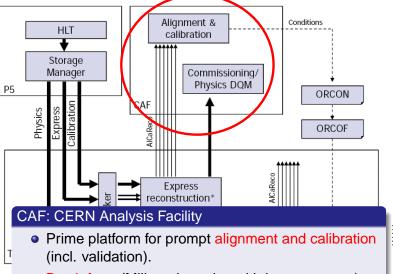

CAF

C

Small dedicated data skims

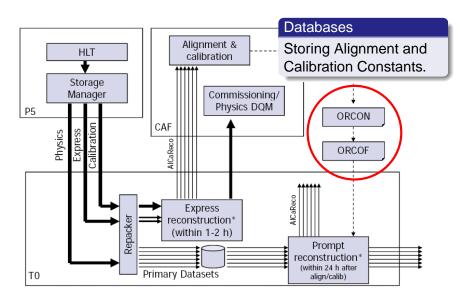
- Algorithms: large statistics, sometimes iterative.
- Fast turn around essential.
 - ⇒ Need to avoid I/O limitations!
- Information used highly selective.
- ⇒ Selecting events and their content.
 - Tk-Alignment:
 - collision data: "MinBias", isolated μ , $Z/J/\Psi/\Upsilon \rightarrow \mu\mu$
 - cosmics, beam halo

HLT


Storage

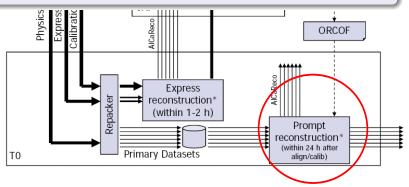
Manager

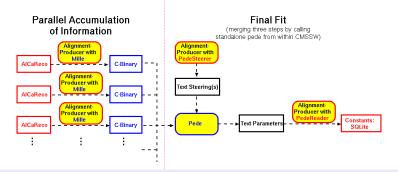
P5


Physics

Prompt Alignment/Calibration Workflow: CAF

- Batch farm (Millepede nodes with large memory).
- Fast access to data: Disk storage.


Prompt Alignment/Calibration Workflow: Databases


Prompt Alignment/Calibration Workflow: T0 (ctd.)

Tier-0 (T0): Offline Production at CERN (Meyrin)

- Prompt Reconstruction, O(24/48 h) delay:
 - picking up updated constants,
 - sets time limit to achieve short term constants.
- Create Alignment and Calibration Skims (AlCaReco) for longer latency workflows.

Computational Layout of Millepede II Alignment

- Millepede II (by V. Blobel) experiment independent:
- Core is standalone Pede program (Fortran 77):
 - Text and binary input.
 - Text output.
 - n = 50k: 10 GB matrix⇒ sparse storage

- Trivial Mille accumulates experiment data:
 - local/global derivatives, residuals, uncertainties (non-trivial...),
 - Fortran or C++, integrated in experiment's software.

Hamburg Commitments

Alignment Input

- Cosmic muon tracks:
 - only real track data so far (⇒ talk by Jula Draeger).
- Beam halo tracks (⇒ talk by Andrea Parenti).
- LAS beams (⇒ talk by Kolja Kaschube)
- "MinBias" tracks at start-up (Justyna Tomaszewska starts)
 - beamspot constraint as started in 2008 by Silvia Miglioranzi
- Isolated muon tracks
 - mass and vertex constraint for resonances: Z, J/Ψ, Υ
- Survey measurements
 - pixel barrel survey implemented by Frank Meier (PSI), help from V. Blobel, G.F.

Hamburg Commitments (ctd.)

Validation

- Release validation of AlCaReco (Justyna T.)
- Alignment validation with residuals (Erik Butz, Jula D., Johannes Hauk)
- Systematics checking (E/p)₊/(E/p)₋ (Holger Enderle, talk in July?)

Miscellaneous

- Determine Alignment Position Error (Johannes H., talk July?).
- Improving track model fed to pede (Claus Kleinwort).
- "Millepede Production System" maintenance (Andrea P.).

"Management" Tasks

- Alignment Software Coordinator (G.F.)
- Aligment and Calibration Convenor (Rainer Mankel)

Hamburg Commitments (ctd.)

Millepede II development (V. Blobel)

- Increased number of parameters N_{par} in CRAFT analysis:
 - \Rightarrow unrevealed indexing problems with $N_{par} > 46340$,
 - now fixed.
- Regularisation method to reduce weak modes.
- Solve convergence problems in case of many outliers.
- ⇒ New Millepede II version currently being tested.

Summary

- CMS Tracker Alignment:
 Determination of many parameters.
- Millepede II:
 A global fit approach capable of this challenge.
- Tracker Alignment integrated in CMS AlCa workflows.
- Hamburg group actively contributing in many areas.
 - ⇒ Focus on combining all input to provide best tracker alignment for CMS.