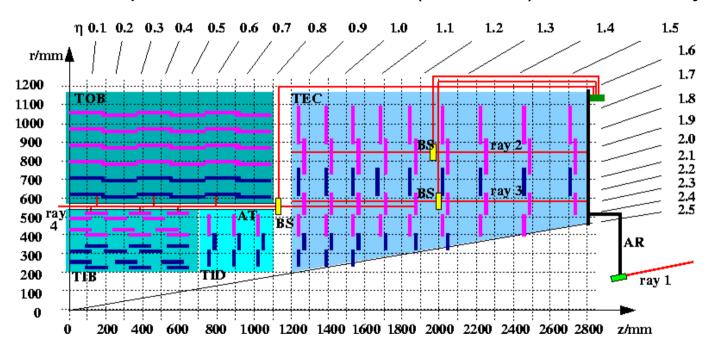
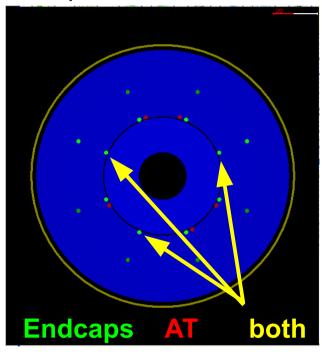

The Laser Alignment System in Track-based Alignment

Kolja Kaschube Universität Hamburg

OUTLINE


- 1. The Laser Alignment System (LAS)
- 2. Parametrization of LAS Beams
- 3. An Idealized Alignment: Proof of Principle
- 4. CRAFT Data: Hits and Residuals
- 5. Conclusion & Outlook


LASER ALIGNMENT SYSTEM

40 fixed infrared laser beams, 16 per Endcap, 8 Alignment Tubes

- directed perpendicularly onto 434 Si-Strip-modules via Beam Splitters (BS)
- position measurements (in local x) with accuracy < 100 μm

- Laser beams are measured by Si-Strip sensors
- Endcap modules are semi-transparent to the lasers
- 8 Alignment Tube (AT) beams are directed onto barrel modules via semi-transparent mirrors

LAS & TRACK-BASED ALIGNMENT

Track-based Alignment

- desirable to combine many different tracks
 - \rightarrow reduction of χ^2 -invariant deformations

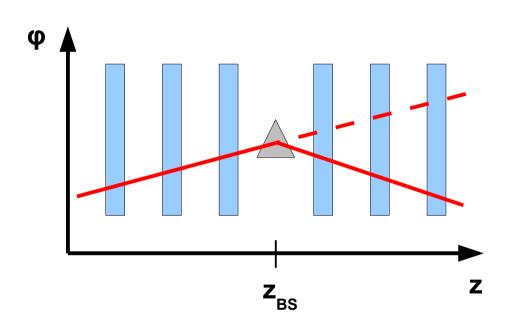
Laser Alignment System

- unique beam shape not found in collision tracks
- monitor relative movements of endcap disks
- positions of endcaps, inner, and outer barrel wrt each other
- currently only stand-alone alignment with LAS data

Interface

- treat LAS beams like "tracks"
- use LAS hits to fit each beam separately
- different beam models for endcaps, Alignment Tube beams
- calculate track residuals
- write objects to be used by alignment algorithms (HIP, MillePede)

BEAM MODEL


Tracker Endcaps

Laser beams assumed to be straight

$$\varphi_{hit} = a \cdot z_{module} + b$$

sensitive coordinate of Strip Tracker modules is global φ

→ no measurement in global r and z

Beam splitter kinks cause offset of beam on module

$$\Delta \phi_{BS} = 2 \tan(\alpha/2) \cdot (z_{module} - z_{BS})/r_{beam}$$

- applied to modules on one side of beam splitter, e.g.

$$\phi_{hit} = a \cdot z_{module} + b + \Delta \phi_{BS}$$
 if $z_{module} > z_{BS}$

BEAM MODEL

Alignment Tubes

- endcap beam segments treated as shown last slide

Barrel beam model

- radial distance of modules to beams

$$\Delta \phi = - a \cdot r_{\text{offset}}$$

- rotation of Alignment Tubes

$$\Delta \phi_1 = \pm r_{\text{offset}} / r_{\text{module}} \cdot \tan(\phi_{\text{AT}})$$

- tilt of Alignment Tubes

$$\Delta \phi_2 = -r_{\text{offset}}/r_{\text{module}} - \tan(2\theta_{\text{AT}})$$

no corrections for individual mirrors (yet?)

$$\phi_{hit} = a \cdot (z_{module} - r_{offset}) + b + \Delta \phi_1 + \Delta \phi_2$$
 if barrel module

IDEALIZED ALIGNMENT

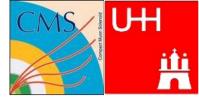
Beam model

- endcaps only, no beam splitters

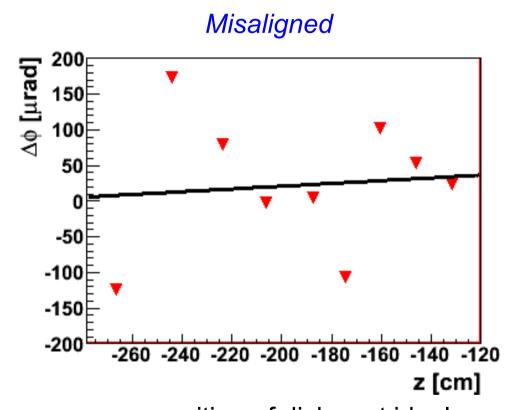
$$\varphi_{hit} = a \cdot z_{module} + b$$

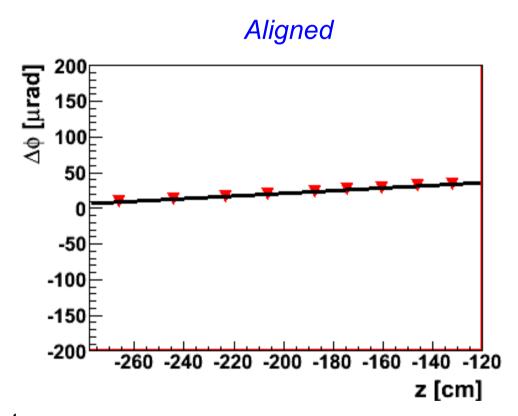
Data (toy Monte Carlo)

- one set of "LAS" beams", all hits at center of module (x = 0.0)

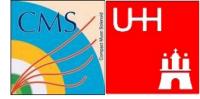

Misalignment

- endcap disks shifted in global x, y, φ by 100 μm (gaussian distributed)


Alignment


- created interface to Millepede
- 6 constraints of global movements of endcaps (rotation, twist, shifts in x, y, tilts in x, y)
- aligned in global x, y, φ

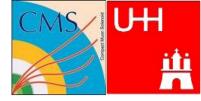
IDEALIZED ALIGNMENT



TECminus Disk Alignment

- φ-position of disks wrt ideal geometry
- linear fit to data points: slope (global twist) and offset (rotation) unchanged
 - → LAS insensitive to those global shifts
 - → expected alignment of disks

LAS data taking at CRAFT

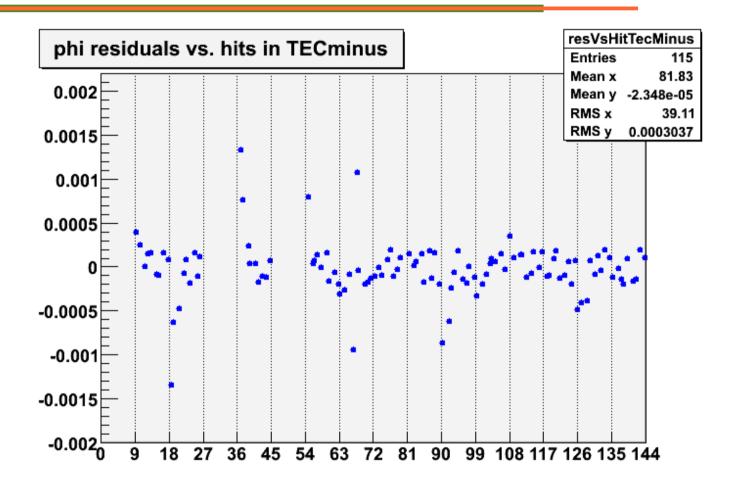

- 2000 shots per beam for good signal-to-noise ratio
- beam position on module determined from distribution of shots
- overlapping beams of ATs/TEC rings 4 not disentangled, thus ignored
- several other bad modules ignored
- no sensible error estimation yet, assume 30 μm uniformly

Fit performed

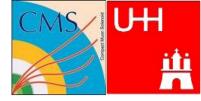
- Beam splitter angles fitted along with hit positions
- Alignment Tubes: no correction for rotation, tilt
- residuals calculated in global φ-coordinate

Geometry

- recent CRAFT MillePede Alignment


TECminus

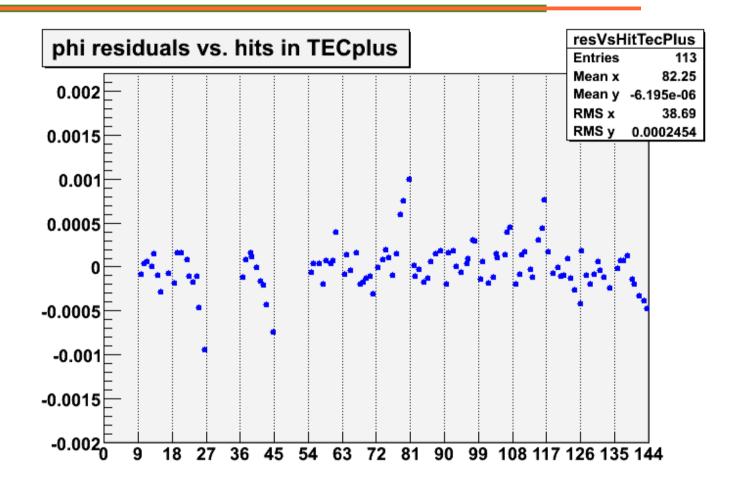
residuals in φ


- scale: radians
- for each hit
- sorted by beam

RMS = $304 \mu rad$

some outliers present

divided in x for all 16 beams beams 1, 4, 6 ignored due to overlap with AT beams


TECplus

residuals in φ

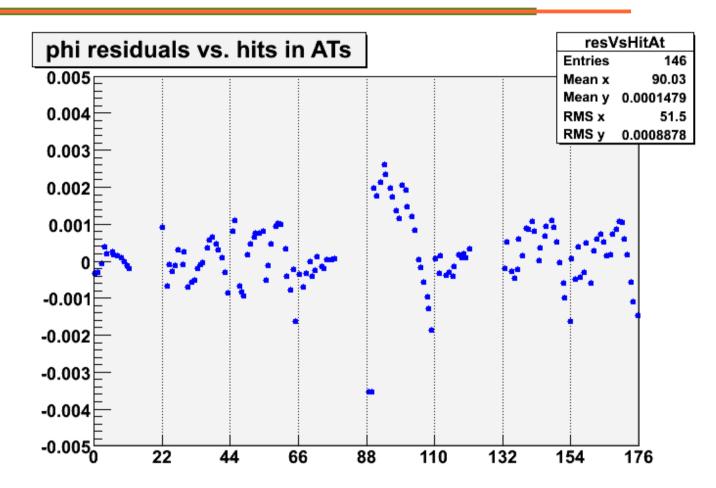
- scale: radians
- for each hit
- sorted by beam

RMS = 245 μ rad

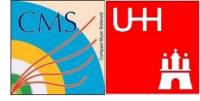
still some kinks visible

divided in x for all 16 beams beams 1, 4, 6 ignored due to overlap with AT beams

Alignment Tubes residuals in φ


- scale: radians
- for each hit
- sorted by beam

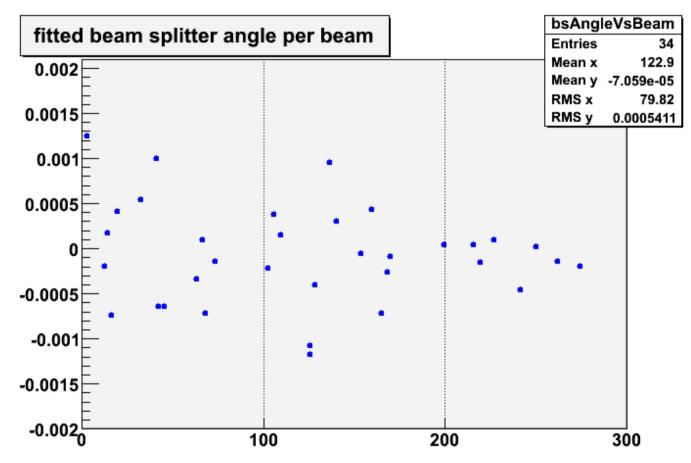
RMS = 888 µrad


Beam 5 strange

→ to be understood

some kinks left

- divided in x for 8 beams
- beams 1, 4, 6 without TEC hits due to overlap with AT beams


fitted beam splitter angle

- scale: radians
- for each beam

RMS = $541 \mu rad$

expected values of up to 2 mrad

values for ATs quite small (ignore beams 1, 4, 6)

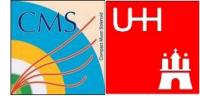
divided in x for TECplus, TECminus, AT 6 TEC beams ignored due to overlap with AT beams

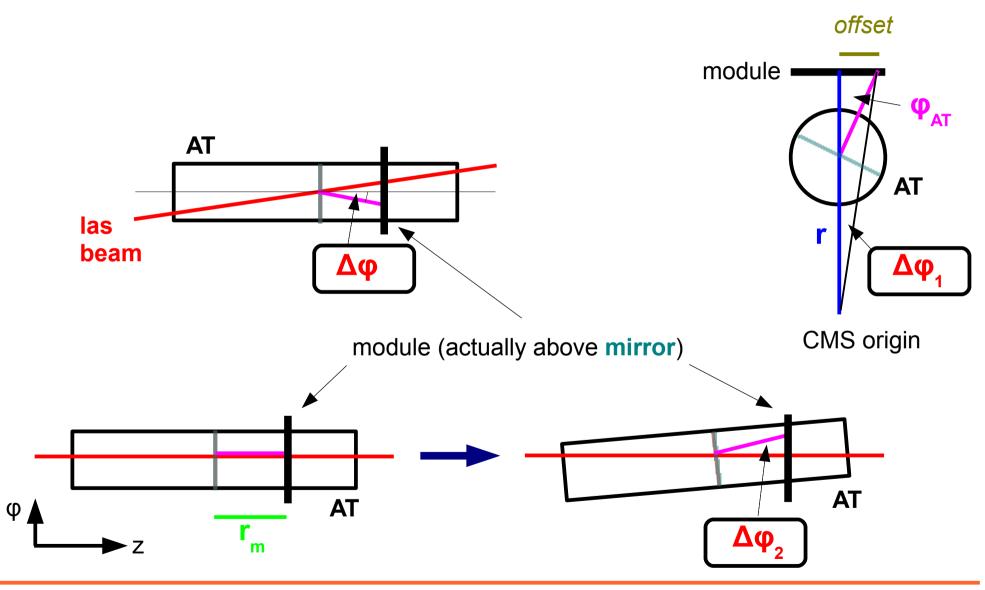
CONCLUSION & OUTLOOK

Alignment of endcap disks with LAS-like data possible in idealized conditions

LAS CRAFT data used to calculate track residuals for all beams

- corrections for Beam Splitters, Alignment Tube displacements possible
- calculates track parameters


To do


- investigate CRAFT data to understand strange effects
- make output (residuals, track parameters, derivatives) readable to alignment algorithms (HIP, MillePede)
- combine LAS data with other tracks in track-based alignment

BACKUP

ALIGNMENT TUBES

