DOUBLE-BETA DECAY WITH THEIA

Guideline slides for discussion

Lindley Winslow and Valentina Lozza

QUESTIONS THAT WE NEED TO ANSWER:

- * Choice of isotope and fraction of loading:
 - * loading with several isotopes have been demonstrated: Xe, Te, Nd
 - * possibility of enrichment: Ca????

	Q	percent	element	$G^{0 u}$	$M^{0\nu}$	$T_{1/2}^{0\nu}$ for	tons of	equivalent	annual world	natural	enriched	$0\nu/2\nu$
Isotope	(MeV)	natural	cost [5]	$(10^{-14}/{\rm yr})$	(avg)	2.5 meV	isotope for	natural	production [5]	elem. cost	at \$20/g	rate [2][8]
		abund.	(\$/kg)	[6]	[7]	$(10^{29} \mathrm{yrs})$	1 ev/yr	tons	(tons/yr)	(\$M)	(\$M)	(10^{-8})
⁴⁸ Ca	4.27	0.19	0.16	6.06	1.6	2.70	31.1	16380	2.4×10^{8}	2.6	622	0.016
⁷⁶ Ge	2.04	7.8	1650	0.57	4.8	3.18	58.2	746	118	1221	1164	0.55
⁸² Se	3.00	9.2	174	2.48	4.0	1.05	20.8	225	2000	39	416	0.092
$^{96}\mathrm{Zr}$	3.35	2.8	36	5.02	3.0	0.93	21.4	763	1.4×10^{6}	27	427	0.025
¹⁰⁰ Mo	3.04	9.6	35	3.89	4.6	0.51	12.2	127	2.5×10^{5}	4.4	244	0.014
¹¹⁰ Pd	2.00	11.8	23000	1.18	6.0	0.98	26.0	221	207	5078	521	0.16
¹¹⁶ Cd	2.81	7.6	2.8	4.08	3.6	0.79	22.1	290	2.2×10^{4}	0.81	441	0.035
¹²⁴ Sn	2.29	5.6	30	2.21	3.7	1.38	41.2	736	2.5×10^{5}	22	825	0.072
$^{130}\mathrm{Te}$	2.53	34.5	360	3.47	4.0	0.75	23.6	68	~ 150	24	471	0.92
$^{136}\mathrm{Xe}$	2.46	8.9	1000	3.56	2.9	1.40	45.7	513	50	513	914	1.51
$^{150}\mathrm{Nd}$	3.37	5.6	42	15.4	2.7	0.37	13.4	240	$\sim 10^4$	11	269	0.024

- For a 20kT detector, a 0.5% loading already means 100 T of loading material (>30 T of loading isotope for Te)
- * Te has a large natural abundance, Xe can be enriched
- * Both of them have high Q-value
- * They have the largest 0nu/2nu rate

QUESTIONS THAT WE NEED TO ANSWER:

- * Goal = normal hierarchy equivalent to nEXO:
 - * with Ba tagging = 7-20 meV
 - * without Ba tagging = 3-9 meV

- * 50T of ¹³⁰Te in a WbLS (50 kT with FV of 0.6)
- * Light yield of 160 pe/MeV
- * 15 meV in 10 years

QUESTIONS THAT WE NEED TO ANSWER:

- ★ Understand the depth requirement: muon induced background like ¹0C
- ★ Understand direction reconstruction requirement: Can we reduce the ⁸B-neutrino background?
- * Understand the requirement for the light yield: High QE PMTs? Wavelength shifter? Fluor?
- ★ Use a bag OR a balloon OR no special containment for the BB isotope?
- ★ Understand how much PMT coverage is needed i.e resolution
- ★ Define required purity of WbLS cocktail

CONTACTS AND MAILING LISTS

- ★ General THEIA mailing list: theia@lists.lbl.gov
- > Double-beta decay mailing list: theiaDBD@lists.lbl.gov
 - * Instructions can be found here: http://theia.berkeley.edu/index.php/Help
- * Website: http://theia.berkeley.edu/index.php/Neutrinoless_Double_Beta_Decay