
RAT-PAC
(RAT is an Analysis Tool... Plus Additional Codes)

Andy Mastbaum
University of Chicago

Theia Workshop
DESY Hamburg
23 March 2017

1

What A software package for both simulation and analysis
with an emphasis on optical detectors

How Build on standards: GEANT4, customized GLG4Sim,
and ROOT. C++ and occasional Python.

Why Wanted a framework atop Geant4 to handle event
processing, data management, and make detector
definition easier

Who Originally developed for Braidwood, now there are
custom versions under development by SNO+,
MiniCLEAN, DEAP, a few others. RAT-PAC is an
open source version being developed by Theia,
WATCHMAN, ANNIE.

Code: https://github.com/rat-pac/rat-pac
Docs and Tutorials: https://rat.readthedocs.io

2

Goals

I Support current and future detector R&D by allowing
quick changes to optics, simulation of test stands, etc.

I Generate realistic Monte Carlo samples of signals,
backgrounds, and calibration sources.

I Provide a simple event-level analysis framework for MC and
detector data, suitable for individual and production use.

3

Principles

I “AMARA: As Microphysical As Reasonably Achievable.”

I Track each and every photon through a detailed detector
geometry (photon thinning optional).

I Make simulation details like the full geometry model
available to event analysis code like fitters.

I Stay generic to support different experiments with different
geometries, DAQs, data structures, etc.

I Minimize hard-coded parameters to allow simple run-time
configuration changes (less recompiling).

4

SNO+ Case Study1

(a) Perform measurement (b) Simulate in RAT

(c) Adjust parameter (d) Simulate full detector

1S. Grullon, Penn
5

The Simulation Process

1. Propagation of primary particles (Geant4)
2. Production of optical photons

I Add Geant, GLG4Sim, custom processes
I GLG4Scint, G4Scint, BNL WLS (L. Bignell, BNL)

3. Propagation of optical photons (absorption, reemission,
scattering, boundary processes)

I A component-scaling optical model is currently being
developed by Richie Bonventre (Berkeley)

I GPU-accelerated photon propagation in Chroma2 is a
possibility being investigated

4. Photon detection (photon tracking within the PMT geometry,
hit charge and time model)

5. Digitization, triggering, and readout

2http://chroma.bitbucket.org
6

The Simulation Process

Generator

Producer

DS DS DS

Processor Processor Processor

ROOT File

RATDB

RATDB

An event data structure is populated by a
generator or producer, and operated on by

processors.

7

An Example Job
1. Load any non-default DB tables, override parameters
2. Define processor chain
3. Define vertex generators
4. Run (rat macro.mac)

A macro:

/rat/db/set DETECTOR experiment "SNO"
/rat/db/set DETECTOR geo_file "SNO/sno.geo"
/rat/db/set GEO[target] material "wbls"
/run/ initialize
/rat/proc frontend
/rat/proc trigger
/rat/proc calibrate
/rat/proc awesomeFitter
/rat/proc outroot
/rat/ procset file " some_electrons .root"
/ generator /add combo gun:fill: poisson
/ generator /vtx/set e- 0 0 0 1.0
/ generator /pos/set target
/ generator /rate/set 1
/rat/run/ start 100

Now, let’s look in more detail...
8

RATDB Database

Store and retrieve RAT parameters and detector
constants, which can be set at run time.

/rat/db/set DETECTOR experiment "SNO"
/rat/db/set DETECTOR geo_file "SNO/sno.geo"
/rat/db/set GEO[target] material "wbls"

I Local text files
I JSON format
I Easy to use for studies or offline analysis

I CouchDB server support
I Utilities to set up and push tables to server included

Detector Database RAT
Parameters

Calibrations
9

RATDB Database: Geometry

I Procedurally-defined nested solids – in between GDML and C++
I JSON format
I Shape builders defined in C++ (many included)

Several examples included in RAT-PAC

10

Simple: A Cylindrical Detector

I Build a library of parts defined in
C++ to assemble detectors

I Place parts in a JSON geometry
definition file

I This cylinder took ∼ 30 lines, no
C++, no recompiling

I Rapidly get new detectors (and
new people!) up and running

I Quick and easy tweaks for testing

11

Excruciatingly Detailed: MiniCLEAN

T.Caldwell (Penn), J.Nikkel (RHUL), MiniCLEAN

12

Geometry
Theia

THEIA PARAMS.ratdb
{

name: " THEIA_PARAMS ",
photocathode_coverage : 0.90 ,
veto_coverage : 0.00 ,
fiducial_diameter : 40000.0 ,
fiducial_height : 40000.0 ,
fiducial_buffer : 2000.0 ,
wall_thickness : 10.0 ,
veto_buffer : 2000.0 ,
veto_pmt_offset : 700.0 ,

}

Parametric detector building
developed by Ben Land

(Berkeley)

13

RATDB Database: Materials, Optics, Etc.

Material composition and optical properties are also defined in
database tables (which are also just JSON text files).

I Material and optical property tables map onto
G4MaterialPropertyVectors

I Loaded at run time, so you can make changes without
recompiling or from a macro command.

I PMT shape, timing, charge spectrum, and many other
simulation aspects are in the DB.

I The goal is to have everything for which it makes sense
run-time configurable.

14

Processors

Do something with the event data structure.
/rat/proc frontend
/rat/proc trigger
/rat/proc calibrate
/rat/proc awesomeFitter
/rat/ proclast outroot
/rat/ procset file " some_electrons .root"

I/O ROOT files, network, other formats
DS Manipulation Pruning unneeded data to reduce file size

DAQ Front end, digitization, triggering, DAQ (i.e. more
simulation)

Calibration Load constants from DB, apply calibrations
Analysis Reconstruction, analysis cuts, etc.

I Process each triggered event or see associated sets of
triggered events (usually one MC event)

I Can be written in C++ or Python
15

Processors

A Few Examples:
outroot Write data structure to a ROOT file
outnet Send event to a remote RAT process

simpledaq A trivial DAQ/trigger simulation where all
photoelectrons trigger a PMT hit

prune Trim off unwanted parts of data structure
fprompt Calculate fraction of hits in a prompt time window

calibratePMT Load and apply PMT calibration constants from the
database (SNO+)

shellFit GPU-accelerated vertex fitter (MiniCLEAN)

16

Processors
Event Reconstruction

Currently Available:
Centroid Basic charge centroid position fitter

PathFitter SNO xyzt fitter for Cherenkov, ported to C++ by
Ben Land (Berkeley)

Coming Soon:
Bonsai SuperK3 low-energy position + energy fit, being

implemented by Marc Bergevin (LLNL)

This Session: FitQun (Mike Wilking), 3D topological
reconstruction (Björn Wonsak)

See Also: Slides from the October 2016 Mainz FroST meeting

3Michael Smy, ICRC07 30th International Cosmic Ray Conference
17

https://indico.mitp.uni-mainz.de/event/83/timetable/#20161022.detailed

Vertex Generators

Make primary particles based on parameters
Top-level generators have ultimate control, may factor out into

vertex, position, and time generators.

/ generator /add combo gun:fill: poisson
/ generator /vtx/set e- 0 0 0 1.0
/ generator /pos/set target
/ generator /rate/set 1

Top-level Generators
combo V + P + T

decaychain Nuclear decay chains
coincidence Pile-up

solar Solar νs
...

Vertex Generators
gun Single-particle gun

es Elastic scattering
pbomb Photon bomb

spectrum Energy spectrum
...

18

Vertex Generators

Position Generators
point All in one place

fill Fill a volume
paint Uniform on volume

surface
fillshell Spherical shell

within a volume
line Uniform on line

segment

Time Generators
uniform Events separated by

t= 1/rate
poisson Event rate is Poisson

with µ= rate

19

Producers

Instead of simulating, fill in the data structure
from an external source

I Read in events from disk (saved MC or real detector data)
I Listen to events incoming from the network
I Unpack from other formats into the ROOT data structure
I Read GENIE vertices using genie2rat tool (R. Bonventre,

Berkeley)

For example, InROOTProducer reads in a RAT ROOT file:

/rat/ inroot /read filename .root

Processors don’t care where events come from

20

Data Structure

Hold all the information about the events

I ROOT TTree: store data in TObjects
I Customized for experiments’ needs
I Physics-motivated hierarchy

I Use data in your standalone C++ or Python (PyROOT) code
with libRATEvent

I Guideline: Use separate branches for MC, event-level data
I Keep analysis processors from using MC truth
I Perhaps not all MC events cause triggers

I Two trees: Event-level and run-level data

21

Data Structure Overview

Run tree

Run ID

Detector state

Event tree

MC Truth

Vertex

PMT truth

Tracks
Triggered

PMT hits

Reconstructed vertex
Analysis output

root [0] T->Draw (" mc. particle .ke ");
root [1] T->Draw (" ev.pmt. charge ", "ev. centroid .pos.Mag () <1000");

22

23

Testing with rattest

A high-level testing framework to make sure the
physics doesn’t change unintentionally

I Built-in functional testing framework eliminates boilerplate
I You write a short macro and a ROOT script to produce

histograms, rattest KS tests against a standard result

I CxxTest unit testing framework also included

I There is a web application (developed by MiniCLEAN and
SNO+) to run full suite of tests on each commit and present
results in a web interface

24

Getting the Code

Dependencies:
I Geant4 (10.01)
I ROOT 5
I SCons
I Optional: bzip2, cURL (for advanced database features)

Getting the code (public version):
I https://github.com/rat-pac/rat-pac

Compiling:
I $./configure && source env.sh && scons

Running:
I $ rat mac/electron demo cylinder.mac

25

Summary
RAT provides a quick “batteries included” path to a

flexible, highly-detailed simulation for optical detectors

Microphysical Detailed microphysical simulation
Flexible Lightweight framework easily adapted to new

experiments
Robust Built-in functional testing framework

ROOTful Automatic generation of ROOT dictionary and library
for data structure

Scalable Supports a CouchDB database for detector/calibration
constants

Community In use by several current and upcoming experiments
Documentation User guide at rat.rtfd.org

Questions?

(Future questions −→ mastbaum@hep.upenn.edu)

26

http://rat.rtfd.org

27

Development Model

I Originally developed for Braidwood
I Independent forks by MiniCLEAN, SNO+, DEAP, others
I Mid-2014: Open source RAT-PAC (MIT-style license)
I “PAC” refers to major components being ported in from

BACCARAT and others (ongoing)
I Managed by an interest group which currently includes

Theia, WATCHMAN, and ANNIE.
I The code is available for anyone to use. It’s also possible to

join in development; interested parties should contact
Gabriel Orebi Gann (gorebigann@lbl.gov).

https://github.com/rat-pac/rat-pac

28

	Overview
	Introduction
	Goals
	Principles

	Simulation
	Execution
	Database
	Geometry
	Materials
	Processors
	Generators
	Producers

	Structures
	Data Structure
	Testing

	Getting the Code
	Conclusions
	Development Model

