Jinping Neutrino Experiment and DSNB (SRN) with slow liquid scintillator

Zhe Wang Tsinghua University (for the research group)

March 23, 2017 at THEIA workshop

Location of CJPL

Travel:

1. To Xichang airport by air (from Beijing, Shanghai, etc.)

1000km

2. To Jinping laboratory by car (<2 hours)

CJPL-I and Dark Matter Exp.

Design of CJPL-II

	CJPL-I	CjPL-II
Rock Work	4000 m ³	131000m ³

CJPL Current status

May 2016

3D Laser Scan

Ideal Low Bkg. Laboratory

→Overburden 2400 m←

Jinping Neutrino Experiment

Or spherical detector Or a single detector

- TWO detectors
- Total fiducial mass 2000 tons (solar), 3000 tons (geo, supernova)
- Liquid scintillator or slow liquid scintillator
- ~20 m for height and diameter for each
- Light Yield>500 PE/MeV

Solar Neutrinos

Simulation study with Borexino and Jinping assumptions. Various target mass and resolutions studied.

Solar Neutrinos Oscillation

Constrain neutrino oscillation upturn in Solar density

Neutrino Energy MeV

Reject or discover new physics (sterile, NSI, CPT)

Electron Energy MeV

Detectable Ratio

0.9

Discover CNO neutrino Address metallicity problem

- Precise measure of all components
- Expected to discover CN v
- O-15 precision 10%
- Direct proof for metallicity problem

Geoneutrinos

- U geoneutrino spectrum
- Th geoneutrino spectrum
- Th/U ratio ~ 10%
- Geo-reactor

- Address mantel contribution
- Geoneutrino flux prediction at Jinping Sci. Rep. 6, 33034 (2016)

SRN spectrum

$$\frac{d\phi(E)}{dE} = \int R_{\text{ccSN}}(z) \frac{dN(E')}{dE'} (1+z) \left| \frac{dt}{dz} \right| dz$$

- 1. R_{ccSN} supernova rate (known with precision)
- 2. dN/dE' neutrino spectrum (Some knowledge)
- 3. Others: redshift or constant

SRN Detection

- Equal amount for each flavors;
- SRN are identified primarily through IBD interactions in a hydrogen-rich detector

$$\overline{V}_{e} + p \rightarrow e^{+} + n$$

$$\rightarrow +p \rightarrow D + \gamma (2.2 \text{ MeV}) (200 \text{ µs})$$

$$\rightarrow +Gd \rightarrow Gd^{*} \rightarrow Gd + \gamma \text{'s (8 MeV)} (30 \text{ µs})$$

- ✓ Liquid scintillator KamLAND [scintillation light]
- ✓ Water SuperK w/ or w/o neutron tagging [Cherenkov light]
- ✓ Gd-Water Super K with neutron tagging [Cherenkov light]
- Elastic scattering

$$\bar{\nu}_e + {}^{40}\text{Ar} \to e^- + {}^{40}\text{Cl}^*$$

 $\nu_e + {}^{40}\text{Ar} \to e^- + {}^{40}\text{K}^*$

Statistical comparison for H or Ar

50 kt LS

17 kt LAr

Water case is similar with LS

arxiv:1205.6003

Experimental results

Backgrounds for SRN detection

Site dependent:

- ✓ Reactor neutrino E < 10 MeV</p>
- ✓ Cosmogenic muons, Li9/He8 E < 15 MeV</p>

Irreducible:

✓ Atmospheric v_e background, E> 25-30 MeV

=> Signal window [10, 30] MeV

Atmospheric $\bar{\nu}_{\mu}/\nu_{\mu}$ charged current (CC) Bkg.

Shaded area: Atmospheric $\bar{\nu}_{\mu}/\nu_{\mu}$ CC background responsible for 10-30 MeV SRN detection

current (NC) Bkg.

<1 GeV Atmospheric v/\bar{v} NC background responsible for 10-30 MeV SRN detection

Key issues on SRN detections

	effi	Atmos. CC	Atmos. NC	Optical
LS	~90%	triple coin. from μ^\pm , decay e^\pm , and neutron capture. μ^\pm visible in 10-30 MeV	Energetic neutrons from high energy atmos. Neutrinos	Scintillati on
water w/o n- tag	~75%	Decay e^\pm from invisible $\mu^\pm,$ μ^\pm invisible in 10-30 MeV	Secondaries (decays) of n or π^{\pm}/π^0 below Cherenkov threshold or different hit pattern	Cherenk
water w/ n-tag	~13%	Reduced a lot by neutron tagging. The efficiency is	Further reduced by	ov
Gd- water	~70%	increased a lot in Gd- water.	neutron tagging.	

• Green: advantage / Blue: disadvantage

Slow liquid scintillator candidate - LAB

- & Other candidates: oil-based or water-based

- Rising time (τ_r): 7.7 \pm 3.0 ns
- Decay time (τ_d): 36.6 \pm 2.4 ns
- PMT time resolution: ~2ns
- Scintillation light yield: ~1000/MeV

Separation of particles with LAB

Simulation of all types of particles

- Geant4 true information
- 10% QE efficiency for all photons
- No other detector effect

Separation of particles with LAB

More realistic:

- 10 ns cut for Cherenkov counting
- Attenuation in a 10-m R detector (Eff: 10% for S and 50% for C)
- 10% efficiency for all photons

Simulation study

- [Detector response] Use LAB, PID in the realistic case
- - $\alpha > 100 \text{ MeV (Honda)}$
 - \varnothing < 100 MeV (Barr), basically for atmos. $\bar{\nu}_e$, ($\bar{\nu}_\mu/\nu_\mu$ CC interaction threshold ~105 MeV, NC neutron mainly contributed from >100 MeV atmos. flux)
 - ಡ MSW effect considered, which would reduce the flux of $\bar{\nu}_{\mu}/\nu_{\mu}$ by 30%-50% in the interested energy range for SRN study
- & GENIE cross sections for neutrino interactions
- & Simulation validated by KamLAND SRN result (2012)

Suppression of Atmos. nu backgrounds

NC background is suppressed with particle id for electron and neutron recoils and others

Result in a 20 kton-year detector

Environmental background at Jinping level

Comparison with other techniques

20 kton-year	water ^a	Gd-w ^a	LS	slow LS
Atmos. $\bar{\nu}_e$	0.040	0.21	0.28	0.26
Atmos. $\bar{\nu}_{\mu}/\nu_{\mu}$ CC	0.33	1.8	3.6	0.025
Atmos. NC	0.095	0.49	62	0.35
Total backgrounds	0.47	2.5	66	0.64
Signal ^b	0.54	2.8	4.2	4.1
Signal efficiency	13%	70%	92%	90%
S/B	1.1	1.1	0.064	6.4

^a with neutron tagging.

Note:

- 1. Traditional PSD in LS should improve the LS result.
- 2. For LAr, we expect the same S/N and Eff.

b HBD model; water and Gd-w results corrected by a factor ~0.9 due to the different fraction of free protons in water from that in LAB.

Comparison in a plot

Band is background only uncertainty at 1 sigma

27

Discovery potential

Final comments on the result

Jinping Simulation & Analysis

2025, physics results

18-20: TDR

2020: kilo-ton detector

16-18: CDR

2017-18: 10 ton prototype

14-15: LOI

2016: 1 ton prototype

2014-15: 20 L Slow liquid scintillator

2014-15: Physics potential study

Thank you

More detail of the Jinping Neutrino Experiment can be found at http://jinping.hep.tsinghua.edu.cn