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The SNO+ Detector

SNO+: Located in SNOLAB in Sudbury, Canada

Repurposing of the original SNO Detector

Replace heavy water with scintillator

SNO+ is a OvBB experiment, but solar physics can be
performed before adding the OvBp isotope (*3°Te)
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Solar Neutrinos in SNO+

Main goal: direct measurement of solar neutrino fluxes

Measure 8B spectrum for background characterization in OvBp phase U - - |
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An underground scintillator purification plant is 105 —
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necessary to remove all types efficiently
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The SNO+ scintillator plant
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Multistage Distillation Column

Purification based on difference in volatility of Primary
elements/molecules Steam foop for eatrecovery | condenser

Highly effective for heavy metals Secondary

. condenser
Ra, U, Th, Po, Pb, Bi, K,etec. | =
aBor 0 Y | B Reflux — )@ Vacuum pump
Distillation operation speed: 19.3 LPM Scintillator —%‘ """" — LAB condensate
. . i . . 19 LPN)Y o R e orr
Designed to keep pace with LAB rail car deliveries ( ) Preheater fumm 238°C tank
Tower Pump | Mix —
Reflux: condensed distillate returned to column Reboiler iﬁ;:ﬂ't'at”
FIm_cilc.drlps down column trays, improves distillate 0 Tom
puritication PPO 242°C
o ) concentrate : > '_.D.j:ﬁ;p
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for space saving and thermal efficiency
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Water Extraction

Scintillator
Qutput
(150 LPM)

upw
(30 LPM)

Removal of impurities using differences in solubility of
elements in different solvents o

Particularly effective: Ra, U, Th, K, Pb, Bi

Operation flow: 150 LPM

Allows for ~4 day turnover of detector (Purify whole detector
volume before ~1 half-life of radium passes) o

HTR

Cooler

HX Return to
UPW plant
(29 LPM)

Pump RO Membrane To waste
(1LPM)

(3]
Benchtop test with KARR column showed 96.5% removal ’

of Radium in one pass

82% of ?1?Pb removed in first pass, but none in following
passes

210pp daughter from 2#Po a-decay can form organo-metallic
molecules within scintillator; not effectively removed
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Gas Stripping

Scintillator
Removal of radioactive gases (120 Lo) l Vacuum pump
Rn removal eff.: 95% and vent header
Packed column
Removal of oxygen gas; oxygen quenches light \ | e
output in the scintillator SNO+ column: 24" diax 24 H. | | °
02 removal eff.: 99% o Ste.am gener.ator(lo kg/hr)
° (using Rn stripped H,0)
Combination of steam and nitrogen gas o I« N2 (3 ke/h)
Limited access to N, underground e

(150 LPM)
(3]

Packing — minimizes pressure drop in column
while maximizing fluid/vapor crossflow

Always performed before returning scintillator
to AV

Operation flow rate: 150 LPM
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Scavenger Columns

Columns packed with Quadrasil-AP™

Silica beads with functional groups found to be
efficient at removal of metals

Small-column testing yielded over 90% efficiency
for Pb & Ra removal

Higher than one pass of water extraction for Pb;
organo-metallic forms are effectively removed

Columns are “re-chargeable” for extensive
purification use

Also offer an ex-situ assay method

Strip the impurities off columns with HCl acid, count
sample with alpha-beta coincidence counting

Flow rate: 150 LPM achievable
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Conclusions

A scintillator plant has been constructed in
SNOLAB to meet the background limits
required for SNO+

Plant construction is now completed and
water commissioning is underway

Given enough measuring time, SNO+ can
attempt to directly measure several sub-MeV
solar neutrino fluxes
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Requirements on LAB/PPO purity

Gas leak rates into nitrogen cover gas
<1 x 10® atm cc/sec for the entire plant (RICHARD’S FINAL)

Confirmed through helium leak-checking all scintillator plant lines

Uranium/Thorium (equilibrium components): at or lower than Phase-l Borexino
Purification plant components similar in design & from same company
U chain: 1.6 x 10''7 g/g ..., ~13 decays/day
Th chain: 6.8 x 108 g/g_ ..., ~2 decays/day

Required fines purity
Military Std 1246C
No particles larger than 5 um found ina 1 L sample

Limits on how many <5 um particles can be present
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The SNO+ scintillator plant overview

LAB brought in by rail cars through Creighton mine, stored in SNOLAB
until purification starts

Purification is performed in four parts:
Distillation

Solvent-Solvent Extraction
Gas stripping
Scavenger columns

Initial purification: distillation, then stripping
On-line purification: water extraction or scavengers, then stripping

All materials made of SS316L, PTFE, or glass
Process pressure maximums in plant: 150 PSI

All equipment rated for full vacuum

Process temps.: LAB distillation 238°C @ 55 Torr, PPO distillation 242°C @ 20 Torr, water
extraction 80°C, steam stripping 100°C.
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Solar Metallicity Problem

A high metallicity (GS98) and low metallicity vk T T
(AGS09) model result in a solar sound speed ‘ ‘

=== Asplund et al. (2005) mix / \
discrepancy between SSM measurements and

\

‘l

0.008 '1|

. . |
helioseismology measurements % oo ‘.‘
& ‘.
0.000 —

The two models have a considerable difference in :
measurable CNO neutrino fluxes (17F, 150, 13N);

PR S I S NS SRR N NSRS S N S S
an accurate measurement could break this o e
degeneracy | | o
Figure 3. Illustration _of the “solar abur_1dal?ce problem” circa 2005_. The relative “dlfference (de)/c betv:f’egn
G598 predicted CNO flux: 10.71 i_ 0.46 X 108 Cm-z s-]_ the sound speed as inferred from helioseismology and that predicted by the “standard solar model” is

shown for two different choices of the solar heavy element mix: Grevesse & Sauval [42, solid line] and

Asplund et al. [5, dashed line].
i c 8 -2 -1
AGSOg p red ICted C N O fl UX. 7 : 13 -I_- 0'45 X 10 Cm S M. Catelan, “2013 Selected Topics in the Evolution of Low-mass Stars”, EPJ Web of Conferences 43, 01001 (2013) DOI:
10.1051/epjconf/20134301001 (2013)

Fluxes: Borexino Collaboration (Smirnov, O. et al.), “Solar neutrino with Borexino: results and perspectives”, Phys. Part. Nucl. 46
(2015) no.2, 166-173
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able of Uncertainties of v-flux Measurements

pep 13% 8.9% 21.6% 1] N/A
CNO N/A ~15%7? <7.4x108cm?2s N/A

1[2]
8B 10% 7.1% 17.1% B3I 14.9% 4
'Be 5.1% 3.3% 4.9% (2] 17.5% [3
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