Neutrino Physics Off the Beaten Paths

Joachim Kopp LAUNCH 2017 | Heidelberg, Germany | September 14-15, 2017

In this Talk

- **Markov Light Sterile Neutrinos**
- **Meutrinos and Dark Matter**
- **Mößbauer Neutrinos**
- **Markov The GSI Anomaly**

Light Sterile Neutrinos

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Anomalies in Short Baseline Oscillations

\mathbf{V} LSND / MiniBooNE: anomalous $\nu_{\mu} \rightarrow \nu_{e}$ oscillations

 \mathbf{V} LSND / MiniBooNE: anomalous $\nu_{\mu} \rightarrow \nu_{e}$ oscillations

4

 \mathbf{V} LSND / MiniBooNE: anomalous $\nu_{\mu} \rightarrow \nu_{e}$ oscillations

 \mathbf{M} Reactor & Gallium Experiments: anomalous ν_e disappearance

4

 $\mathbf{V} \sqcup \mathbf{LSND} / \mathbf{MiniBooNE}$: anomalous $\nu_{\mu} \to \nu_{e}$ oscillations

 \mathbf{V} Reactor & Gallium Experiments: anomalous ν_e disappearance

Global Fit in 3+1 Model

Dentler Hernandez JK Machado Maltoni Martinez Schwetz, in preparation see also works by Collin Argüelles Conrad Shaevitz, 1607.00011, Gariazzo Giunti Laveder Li, 1703.00860

Status of Light Sterile Neutrinos

 severe tension (p < 10⁻⁴)
 scrutinize anomalies for unknown systematics (need 4 independent effects!)
 scrutinize also null results!

Standard picture: ν_s production via oscillation at T \ge MeV Constrained by N_{eff} and Σm_v , but there are ways out:

Standard picture: ν_s production via oscillation at T \ge MeV Constrained by N_{eff} and Σm_v , but there are ways out:

- Entropy production at T < MeV</p>
 - ν_s diluted Fuller Kishimoto Kusenko, <u>1110.6479</u>; Ho Scherrer, <u>1212.1689</u>

Standard picture: ν_s production via oscillation at T \ge MeV Constrained by N_{eff} and Σm_v , but there are ways out:

- Entropy production at T < MeV</p>
 - ν_s diluted Fuller Kishimoto Kusenko, <u>1110.6479</u>; Ho Scherrer, <u>1212.1689</u>

\checkmark New interactions in the ν_s sector

o production suppressed by thermal potential

Hannestad et al. <u>1310.5926</u>; Dasgupta JK, <u>1310.6337</u>

o minimal scenario now disfavored

Cherry Friedland Shoemaker <u>1605.06506</u> Chu Dasgupta Dentler JK Saviano, in preparation

Standard picture: ν_s production via oscillation at T \ge MeV Constrained by N_{eff} and Σm_v , but there are ways out:

- Entropy production at T < MeV</p>
 - ν_s diluted Fuller Kishimoto Kusenko, <u>1110.6479</u>; Ho Scherrer, <u>1212.1689</u>

\checkmark New interactions in the ν_s sector

o production suppressed by thermal potential

Hannestad et al. <u>1310.5926</u>; Dasgupta JK, <u>1310.6337</u>

o minimal scenario now disfavored

Cherry Friedland Shoemaker <u>1605.06506</u> Chu Dasgupta Dentler JK Saviano, in preparation

 \mathbf{v}_s properties change in late phase transition

Bezrukov Chudaykin Gorbunov, 1705.02184

Flux Measurement by Daya Bay

Reactor fuel composition evolves with time ("burnup")

8

Reactor fuel composition evolves with time ("burnup")

 \mathbf{M} Measure inverse β decay rate *per isotope*

 \checkmark

Reactor fuel composition evolves with time ("burnup") Measure inverse β decay rate *per isotope*

Reactor fuel composition evolves with time ("burnup")
 Measure inverse β decay rate *per isotope*

8

Reactor fuel composition evolves with time ("burnup")
 Measure inverse β decay rate *per isotope*

- Reactor fuel composition evolves with time ("burnup")
- Measure inverse β decay rate per isotope
- **Markov Full analysis:**
 - O Compare fit with free ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu fluxes to fit with fixed fluxes + $\sin^2 2\theta_{14}$

$$\Delta \chi^2 = 7.9$$

8

- Reactor fuel composition evolves with time ("burnup") \checkmark
 - Measure inverse β decay rate *per isotope*
- **M** Full analysis:
 - O Compare fit with free ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu fluxes to fit with fixed fluxes + $\sin^2 2\theta_{14}$

 $\Delta \chi^2 = 6.3$ (with H-M uncertainties)

Denter Hernández JK Maltoni Schwetz arXiv:1709.today

- Reactor fuel composition evolves with time ("burnup")
 - Measure inverse β decay rate per isotope
- Full analysis:
 - O Compare fit with free ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu fluxes to fit with fixed fluxes + $\sin^2 2\theta_{14}$

 $\Delta \chi^2 = 6.3$ (with H-M uncertainties)

Interpretation difficult

- Number of degrees of freedom?
- o Include uncertainties in fixed fluxes?

Denter Hernández JK Maltoni Schwetz arXiv:1709.today

8

- Reactor fuel composition evolves with time ("burnup")
 - Measure inverse β decay rate per isotope
- Full analysis:
 - O Compare fit with free ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu fluxes to fit with fixed fluxes + $\sin^2 2\theta_{14}$

 $\Delta \chi^2 = 6.3$ (with H-M uncertainties)

Denter Hernández JK Maltoni Schwetz arXiv:1709.today

Interpretation difficult

- Number of degrees of freedom?
- o Include uncertainties in fixed fluxes?

Fluxes within errors + $\sin^2 2\theta_{14}$, Δm_{41}^2 : p = 0.18 Fluxes free : p = 0.73 $\Delta \chi^2$ (sterile neutrino vs. free fluxes) : p = 0.007

Flux Measurement by Daya Bay

Neutrinos and Dark Matter Recent Developments

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

- keV-scale sterile neutrinos are leading candidate for Warm Dark Matter
 - Improved small scale structure
 - o x-ray line signature
- Production through oscillations challenged by e.g. Lyman-α data

Dark Matter Model Building Flowchart

Decay of heavy scalars

$$\mathcal{L} \supset i\overline{N_{\alpha}}\partial N_{\alpha} + \frac{1}{2}(\partial_{\mu}S)(\partial^{\mu}S) - \frac{y_{\alpha}}{2}S\overline{N_{\alpha}^{c}}N_{\alpha} + 2\lambda(H^{\dagger}H)S^{2}$$

$\ensuremath{\mathnormal{O}}$ S freezes in via $hh \leftrightarrow SS$, decays via $S \to NN$

☑ N produced with relatively cold spectrum

Shaposhnikov Tkachev <u>hep-ph/0604236</u> Kusenko <u>hep-ph/0609081</u> Merle Niro Schmidt <u>1306.3996</u> Merle Totzauer <u>1502.01011</u> König Merle Totzauer <u>1609.01289</u>

Production via Scalar Decays

Coherent forward scattering of neutrinos on DM

- o analogous to SM matter effects ("MSW effect")
- Observability requires huge DM number density

Fuzzy Dark Matter

- **o** scalar or vector, $m < 10^{-20} \, \mathrm{eV}$
- o Compton wave length $\sim \mathrm{pc}$
- o Interesting for small scale structure

Krnjaic Machado Necib, <u>1705.06740</u> Brdar JK Liu Prass Wang, <u>1705.09455</u>

Neutrino – DM Interactions

13 JG

Coherent forward scattering of neutrinos on DM

o an Limits from Long-Baseline Experiments Ot

0

Mößbauer Neutrinos

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

- Classical Mößbauer Effect: Recoil-free emission / absorption of γ-rays by crystals
 - o Extremely narrow emission / absorption lines
 - o Observation of gravitational redshift in the lab
 - o Determination of chemical environment of emitting nucleus
- Similar effect should exist for neutrinos

$${}^{3}\mathrm{H} \rightarrow {}^{3}\mathrm{He} + \bar{\nu}_{e} + e^{-}(\mathrm{bound}) \rightarrow {}^{3}\mathrm{He} + \bar{\nu}_{e} + e^{-}(\mathrm{bound}) \rightarrow {}^{3}\mathrm{He}$$

³H and ³He embedded in crystals (metal hydrides)

Visscher 1959; Kells Schiffer 1983; Raghavan 2005

Meutrinos with very special properties

- o Resonantly enhanced cross section
- O Neutrino receives full decay energy: Q = 18.6 keV
- **O** Natural line width: $1.17 \times 10^{-24} \text{ eV}$
- Actual line width: ~ 10⁻¹¹ eV (broadening due to impurities, lattice defects, fluctuating B-fields)

Physics opportunities

- O Neutrino oscillations in the lab: Losc ~ 20 m
- o Gravitational interactions of neutrinos
- o Study of solid state effects

Meutrinos with very special properties

- o Resonantly enhanced cross section
- O Neutrino receives full decay energy: Q = 18.6 keV
- **O** Natural line width: $1.17 \times 10^{-24} \text{ eV}$
- Actual line width: ~ 10⁻¹¹ eV (broadening due to impurities, lattice defects, fluctuating B-fields)

Physics opportunities

- O Neutrino oscillations in the lab: Losc ~ 20 m
- o Gravitational interactions of neutrinos
- o Study of solid state effects

$$\begin{split} \Gamma \propto \exp\left[-\frac{E_{S,0}^2 - m_2^2}{\sigma_p^2}\right] \exp\left[-\frac{|\Delta m^2|}{2\sigma_p^2}\right] \\ \cdot \frac{(\gamma_S + \gamma_D)/2\pi}{(E_{S,0} - E_{D,0})^2 + \frac{(\gamma_S + \gamma_D)^2}{4}} \\ \cdot \left\{1 - 2s^2c^2\left[1 - \frac{1}{2}(e^{-L/L_S^{\text{coh}}} + e^{-L/L_D^{\text{coh}}})\cos\left(\pi\frac{L}{L^{\text{osc}}}\right)\right]\right\} \end{split}$$

$$\begin{split} \Gamma \propto \exp\left[-\frac{E_{S,0}^2 - m_2^2}{\sigma_p^2}\right] \exp\left[-\frac{|\Delta m^2|}{2\sigma_p^2}\right] \\ \cdot \frac{(\gamma_S + \gamma_D)/2\pi}{(E_{S,0} - E_{D,0})^2 + \frac{(\gamma_S + \gamma_D)^2}{4}} \\ \cdot \left\{1 - 2s^2c^2\left[1 - \frac{1}{2}(e^{-L/L_S^{\text{coh}}} + e^{-L/L_D^{\text{coh}}})\cos\left(\pi\frac{L}{L^{\text{osc}}}\right)\right]\right\} \end{split}$$

$$\begin{split} \Gamma \propto \exp\left[-\frac{E_{S,0}^2 - m_2^2}{\sigma_p^2}\right] \exp\left[-\frac{|\Delta m^2|}{2\sigma_p^2}\right] \\ \cdot \frac{(\gamma_S + \gamma_D)/2\pi}{(E_{S,0} - E_{D,0})^2 + \frac{(\gamma_S + \gamma_D)^2}{4}} \\ \cdot \left\{1 - 2s^2c^2\left[1 - \frac{1}{2}(e^{-L/L_S^{\text{coh}}} + e^{-L/L_D^{\text{coh}}})\cos\left(\pi\frac{L}{L^{\text{osc}}}\right)\right]\right\} \end{split}$$

$$\begin{split} \Gamma \propto \exp\left[-\frac{E_{S,0}^2 - m_2^2}{\sigma_p^2}\right] \exp\left[-\frac{|\Delta m^2|}{2\sigma_p^2}\right] \\ \cdot \frac{(\gamma_S + \gamma_D)/2\pi}{(E_{S,0} - E_{D,0})^2 + \frac{(\gamma_S + \gamma_D)^2}{4}} \\ \cdot \left\{1 - 2s^2c^2\left[1 - \frac{1}{2}(e^{-L/L_S^{\text{coh}}} + e^{-L/L_D^{\text{coh}}})\cos\left(\pi\frac{L}{L^{\text{osc}}}\right)\right]\right\} \end{split}$$

$$\begin{split} \Gamma \propto \exp\left[-\frac{E_{S,0}^2 - m_2^2}{\sigma_p^2}\right] \exp\left[-\frac{|\Delta m^2|}{2\sigma_p^2}\right] \\ \cdot \frac{(\gamma_S + \gamma_D)/2\pi}{(E_{S,0} - E_{D,0})^2 + \frac{(\gamma_S + \gamma_D)^2}{4}} \\ \cdot \left\{1 - 2s^2c^2\left[1 - \frac{1}{2}\left(e^{-L/L_S^{\text{coh}}} + e^{-L/L_D^{\text{coh}}}\cos\left(\pi\frac{L}{L^{\text{osc}}}\right)\right]\right\} \end{split}$$
Oscillations

$$\begin{split} \Gamma \propto \exp\left[-\frac{E_{S,0}^2 - m_2^2}{\sigma_p^2}\right] \exp\left[-\frac{|\Delta m^2|}{2\sigma_p^2}\right] \\ \cdot \frac{(\gamma_S + \gamma_D)/2\pi}{(E_{S,0} - E_{D,0})^2 + \frac{(\gamma_S + \gamma_D)^2}{4}} \\ \cdot \left\{1 - 2s^2c^2\left[1 - \frac{1}{2}(e^{-L/L_S^{\text{coh}}} + e^{-L/L_D^{\text{coh}}})\cos\left(\pi\frac{L}{L^{\text{osc}}}\right)\right]\right\} \end{split}$$

The GSI Anomaly

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

★ Storage of H-like ¹⁴⁰Pr⁵⁹⁺, ¹⁴²Pm⁶⁰⁺ ions
 ★ Electron capture to ¹⁴⁰Ce⁵⁹⁺, ¹⁴²Nd⁶⁰⁺

* Storage of H-like ¹⁴⁰Pr⁵⁹⁺, ¹⁴²Pm⁶⁰⁺ ions

- ★ Electron capture to ¹⁴⁰Ce⁵⁹⁺, ¹⁴²Nd⁶⁰⁺
- ★ Change in ion mass
 - → change in revolution frequency
- Measured in Schottky pick-up

Explanation Attempts

Interference of neutrino mass eigenstates

o Numerically: $1/7 \sec \sim \Delta m^2/(2E)$

Ivanov et al. 0801.2121 Kleinert Kienle 0803.2938

o Numerically: $1/7 \sec \sim \Delta m^2/(2E)$

Ivanov et al. <u>0801.2121</u> Kleinert Kienle <u>0803.2938</u>

- Mowever:
 - O only processes with *identical* initial and final states can interferere
 - **O** Not: ${}^{140}Pr \rightarrow {}^{140}Ce + V_{1,2,3}$

Kienert JK Lindner Merle <u>0808.2389</u> Giunti <u>0801.4639</u>, <u>0805.0431</u> Cohen Glashow Ligeti <u>0810.4602</u>

erc

Thank you!

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

