Not So Weakly Interacting Dark Matter

Jörn Kersten

UNIVERSITY OF BERGEN

Based on Torsten Bringmann, Håvard Ihle, JK, Parampreet Walia, PRD 94, 103529 (2016) [arXiv:1603.04884] Torsten Bringmann, Jasper Hasenkamp, JK, JCAP 07, 042 (2014) [arXiv:1312.4947]

Dark Matter Interacting with Sterile Neutrinos

ACDM Cosmology Works Great

Springel, Frenk, White, Nature 440 (2006)

ACDM Cosmology Works Great

Springel, Frenk, White, Nature 440 (2006)

Small-Scale Problems of Structure Formation

Kravtsov, Adv. Astron. (2010) Klypin et al., ApJ **522** (1999)

More galactic satellites predicted than observed

Too big to fail

Oh et al., Astron. J. **149** (2015) De Blok et al., ApJ **552** (2001)

More cuspy density profiles predicted than observed

Boylan-Kolchin et al., MNRAS **422** (2011)

Most massive satellites predicted denser than observed

+ a few additional anomalies Bullock & Boylan-Kolchin, 1707.04256

Small-Scale Problems of Structure Formation

Kravtsov, Adv. Astron. (2010) Klypin et al., ApJ **522** (1999)

More galactic satellites predicted than observed

Too big to fail

Oh et al., Astron. J. **149** (2015) De Blok et al., ApJ **552** (2001)

More cuspy density profiles predicted than observed

Boylan-Kolchin et al., MNRAS **422** (2011)

Most massive satellites predicted denser than observed

+ a few additional anomalies Bullock & Boylan-Kolchin, 1707.04256

~ Astrophysics solutions or new particle physics?

- Standard solution to missing satellites problem
- Neither hot nor cold
 → some free streaming
 → smaller structures washed out

Bode & Ostriker, ApJ 556 (2001)

- Standard solution to missing satellites problem
- Neither hot nor cold
 → some free streaming
 → smaller structures washed out
- Creates cores in dwarf galaxies

Bode & Ostriker, ApJ 556 (2001)

- Standard solution to missing satellites problem
- Neither hot nor cold
 some free streaming
 smaller structures washed out
- Creates cores in dwarf galaxies if free-streaming length > dwarf size → prevents formation of dwarf Catch 22 problem of WDM Macciò et al., MNRAS 424 (2012)

Bode & Ostriker, ApJ 556 (2001)

Chemical Decoupling

- Better known as freeze-out (from thermal/chemical equilibrium)
- Typically $T_{fo} \sim \frac{m_{\chi}}{25}$
- Determined by DM annihilation

Kinetic Decoupling

- Many more partners for scattering than for annihilation
 → Kinetic decoupling much later than freeze-out, T_{kd} ≪ T_{fo}
- $T_{\chi} = T$ until kinetic decoupling

Kinetic Decoupling

- Many more partners for scattering than for annihilation
 → Kinetic decoupling much later than freeze-out, T_{kd} ≪ T_{fo}
- $T_{\chi} = T$ until kinetic decoupling
- Standard WIMPs: T_{kd} ≥ 1 MeV → effect negligible Bringmann, New J. Phys. 11 (2009)

Suppressing Dwarfs by Late Kinetic Decoupling

Dark matter density fluctuations damped by

- collisional damping (viscous coupling to SM particles)
- free-streaming after kinetic decoupling
- acoustic oscillations shared with SM particles

→ Structure formation suppressed at small scales Green, Hofmann, Schwarz, JCAP 08 (2005) Loeb & Zaldarriaga, PRD 71 (2005)

Cutoff in power spectrum of density fluctuations
 Minimal halo mass Vogelsberger et al., MNRAS 460 (2016)

$$M_{
m cut} = 5 \cdot 10^{10} \left(rac{100 \ {
m eV}}{T_{
m kd}}
ight)^3 h^{-1} \ M_{\odot}$$

Want: M_{cut} ≃ 10¹⁰ M_☉
 → Missing satellite problem solved with cold DM for T_{kd} ≤ 1 keV

- Need scattering partner γ̃ with large abundance until T_{kd} ≤ 1 keV → photon, (SM) neutrino, dark radiation
- Here: classification of all minimal possibilities Bringmann, Ihle, JK, Walia, PRD 94 (2016)

- Need scattering partner γ̃ with large abundance until T_{kd} ≤ 1 keV → photon, (SM) neutrino, dark radiation
- Here: classification of all minimal possibilities Bringmann, Ihle, JK, Walia, PRD 94 (2016)
- Scattering amplitude close to kinetic decoupling:

$$|\mathcal{M}|^2 \simeq c_n (E_{\tilde{\gamma}}/m_{\chi})^n$$

• $M_{\rm cut} \simeq 10^{10} \, M_{\odot}$ needs large coefficients c_n and/or light dark matter

Model Classification

- Consider all dark matter and dark radiation spin combinations
- Assume Z₂ symmetry to stabilize dark matter
- Consider all renormalizable and gauge-invariant interactions
- Types of scattering diagrams:

- Take into account inherently related processes
 - Dark matter relic density $(\chi \chi \rightarrow \tilde{\gamma} \tilde{\gamma})$
 - Dark matter self-interactions ($\chi\chi \to \chi\chi$)

Two-Particle Models

		Late kinetic decoupling	DM relic density	DM self- interactions				
$\tilde{\gamma} \setminus \chi$		Scalar			Fermion			Vector
	TOP	LKD	TP	σ_T	LKD	TP	σ_T	
	4p	$m_\chi \lesssim \text{MeV}$	Yes	Constant		(only dim > 4)		
Scalar	t	$m_{\tilde{\gamma}} \sim 1 \text{ keV}$ $m_{\chi} \gtrsim 100 \alpha_{\chi}^{3/5} \text{ TeV}$	$\langle \sigma_T \rangle_{30}$ (for $m_\chi \gtrsim 1 \text{ MeV}$)	Yukawa	$m_{\tilde{\gamma}} \sim 1 \text{ keV}$ $m_{\chi} \gtrsim 100 \alpha_{\chi}^{3/5} \text{ TeV}$	$\langle \sigma_T \rangle_{30}$ (for $m_\chi \gtrsim 1 \mathrm{MeV}$)	Yukawa	$\langle \sigma_T \rangle_{30}$
	s/u		$\langle \sigma_T \rangle_{30}$			$\langle \sigma_T \rangle_{30}$		
Fermion		(only dim > 4 due to Z_2)			(only dim > 4)			Z_2
	4p (only dim > 4)			(only dim $> 4)$			Z_2	
Vector	s/u	$\langle \sigma_T \rangle_{30}$			$\langle \sigma_T \rangle_{30}$			
	SU(N)	$m_{\tilde{\gamma}} \sim 1 \text{ keV}$ $m_{\chi} \gtrsim 10 \alpha_{\chi}^{3/5} \text{ TeV}$	$\langle \sigma_T \rangle_{30}$ (for $m_\chi \gtrsim 1 \text{ MeV}$)	Yukawa	$m_{\tilde{\gamma}} \sim 1 \text{ keV}$ $m_{\chi} \gtrsim 10 \alpha_{\chi}^{3/5} \text{ TeV}$	$\langle \sigma_T \rangle_{30}$ (for $m_\chi \gtrsim 1 \text{MeV}$)	Yukawa	$(\text{only broken} \\ SU(M) \rightarrow \\ SU(N))$

- Massless DR and MeV DM possible for scalar portal: $\mathcal{L} \supset \chi^2 \tilde{\gamma}^2$
- Scalar or non-Abelian keV DR and scalar or fermion DM possible

Three-Particle Models

• Additional particle in *s*/*u*-channel

- Nearly degenerate with DM
 on-shell enhancement
- Solution of missing satellites possible for $m_{\chi} \lesssim 10 \text{ GeV}$

Three-Particle Models

• Additional particle in *s*/*u*-channel

- Nearly degenerate with DM
 on-shell enhancement
- Solution of missing satellites possible for $m_{\chi} \lesssim 10 \text{ GeV}$
- Additional particle V in t-channel
 - Light ~> enhanced scattering rate
 - Missing satellites solved for almost any DM mass
 - Correct DM density from $\chi\chi \rightarrow VV$
 - DM self-interactions

~ all small-scale problems solved

Dark matter annihilation to light mediator $\chi\chi \rightarrow VV$ enhanced by

- Sommerfeld effect Bringmann, Kahlhoefer, Schmidt-Hoberg, Walia, PRL 118 (2017)
- Bound state formation Cirelli, Panci, Petraki, Sala, Taoso, JCAP 05 (2017)
- Ruled out by CMB and indirect DM searches, if mediator decays dominantly to SM particles

Dark matter annihilation to light mediator $\chi\chi \rightarrow VV$ enhanced by

- Sommerfeld effect Bringmann, Kahlhoefer, Schmidt-Hoberg, Walia, PRL 118 (2017)
- Bound state formation Cirelli, Panci, Petraki, Sala, Taoso, JCAP 05 (2017)
- Ruled out by CMB and indirect DM searches, if mediator decays dominantly to SM particles
- → Way out: invisible decays

- Dark matter χ
 - Standard Model singlet
 - Charged under $U(1)_X$ gauge interaction
 - Mass $m_\chi \sim {
 m TeV}$
- Light gauge boson V, $m_V \sim \text{MeV}$
- → Long-range, velocity-dependent interaction
 → Less cuspy density profiles
- → Cusp-core and too big to fail solved

Feng, Kaplinghat, Yu, PRL **104** (2010) Loeb, Weiner, PRL **106** (2011) Vogelsberger, Zavala, Loeb, MNRAS **423** (2012)

Enter the Sterile Neutrino

- Sterile neutrino $N \equiv \tilde{\gamma}$
 - Mass $m_N \lesssim eV$
 - Forms dark radiation
 - Standard Model singlet
 - Charged under $U(1)_X$ ("secret interactions")
- Dark matter scatters off sterile neutrinos

Enter the Sterile Neutrino

- Sterile neutrino $N \equiv \tilde{\gamma}$
 - Mass $m_N \lesssim eV$
 - Forms dark radiation
 - Standard Model singlet
 - Charged under $U(1)_X$ ("secret interactions")
- Dark matter scatters off sterile neutrinos
- → Late kinetic decoupling

~ All small-scale problems of structure formation solved

Bringmann, Hasenkamp, JK, JCAP **07** (2014) Dasgupta, Kopp, PRL **112** (2014) Ko, Tang, PLB **739** (2014) Chu, Dasgupta, PRL **113** (2014)

\rightsquigarrow Dark matter annihilation constraints avoided by decay $V \rightarrow NN$

Dark Matter Production

• High temperatures: $U(1)_X$ sector thermalized via Higgs portal

 $\mathcal{L}_{\mathsf{Higgs}} \supset \kappa |H|^2 |\Theta|^2$

- $\langle \Theta \rangle \sim \text{MeV}$ breaks $U(1)_X$
- $T_{\chi} \sim m_{\chi}/25$: freeze-out (chemical decoupling) of dark matter

$$\Omega_{\chi} h^2 \sim 0.11 \left(rac{0.67}{g_{\chi}}
ight)^4 \left(rac{m_{\chi}}{ ext{TeV}}
ight)^2$$

(neglecting bound state formation)

Cold Dark Matter Parameter Space

- Blue band can be moved vertically by changing sterile neutrino charge and temperature
- Crosses: simulations show that too big to fail solved

Hints for Hot Dark Matter

- 3 σ tension: CMB (z > 1000) vs. local (z < 10) observations
- Expansion rate
 - Planck: $H_0 = (67.8 \pm 0.9) \frac{\text{km}}{\text{s Mpc}}$ A&A 594 (2016)
 - Hubble: $H_0 = (73.24 \pm 1.74) \frac{\text{km}}{\text{s Mpc}}$ Riess et al., ApJ 826 (2016)
- Magnitude of matter density fluctuations (σ₈)
- Resolved by hot dark matter component \simeq dark radiation
- Best fit:

$$\Delta N_{\rm eff} = 0.61$$
$$m_s^{\rm eff} \equiv \left(\frac{T_s}{T_\nu}\right)^3 m_s = 0.41 \text{ eV}$$

Hamann, Hasenkamp, JCAP **10** (2013) Gariazzo, Giunti, Laveder, JHEP **11** (2013) Wyman, Rudd, Vanderveld, Hu, PRL **112** (2014) Battye, Moss, PRL **112** (2014)

~ Added value of sterile neutrino

- *T* ↓ → Higgs portal no longer effective
 → *U*(1)_X sector decouples at *T*^{dpl}_X (depending on κ)
- SM particles becoming non-relativistic afterwards heat SM bath, not U(1)_X bath → T_N < T_ν (depending on number of d.o.f. g_{*})

$$\Delta N_{\text{eff}}(T) = \left(\frac{T_N}{T_\nu}\right)^4 = \left(\frac{g_{*,\nu}}{g_{*,N}}\right)^{\frac{4}{3}} \bigg|_T \left(\frac{g_{*,N}}{g_{*,\nu}}\right)^{\frac{4}{3}} \bigg|_{T_x^{\text{dpl}}}$$
$$\Delta N_{\text{eff}|\text{BBN}} < \left(\frac{58.4}{g_{*,\nu}(T_x^{\text{dpl}})}\right)^{\frac{4}{3}} \stackrel{!}{\lesssim} 1$$

→ BBN bounds satisfied for $T_x^{dpl} \gtrsim 1 \text{ GeV}$ → Correct order of magnitude for hot dark matter hint

Sterile Neutrino Production by Oscillations

- Standard scenario: mixing between active and sterile neutrinos
 → oscillations → ΔN_{eff} ≃ 1 → ruled out by Planck
- U(1)_X interactions → effective matter potential suppresses mixing
 → no production by oscillations for T ≥ MeV

Hannestad, Hansen, Tram, PRL **112** (2014) Dasgupta, Kopp, PRL **112** (2014)

T < MeV: mixing unsuppressed → additional production of sterile neutrinos via U(1)_X

Bringmann, Hasenkamp, JK, JCAP **07** (2014) Mirizzi, Mangano, Pisanti, Saviano, PRD **91** (2015) Tang, PLB **750** (2015) Chu, Dasgupta, Kopp, JCAP **10** (2015) Cherry, Friedland, Shoemaker, arXiv:1605.06506 Forastieri et al., JCAP **07** (2017)

Sterile Neutrino Production by Oscillations

- Standard scenario: mixing between active and sterile neutrinos
 → oscillations → ΔN_{eff} ≃ 1 → ruled out by Planck
- U(1)_X interactions → effective matter potential suppresses mixing
 → no production by oscillations for T ≥ MeV

Hannestad, Hansen, Tram, PRL **112** (2014) Dasgupta, Kopp, PRL **112** (2014)

T < MeV: mixing unsuppressed
 → additional production of sterile neutrinos via U(1)_X

Bringmann, Hasenkamp, JK, JCAP 07 (2014) Mirizzi, Mangano, Pisanti, Saviano, PRD 91 (2015) Tang, PLB 750 (2015) Chu, Dasgupta, Kopp, JCAP 10 (2015) Cherry, Friedland, Shoemaker, arXiv:1605.06506 Forastieri et al., JCAP 07 (2017)

\rightsquigarrow Cosmology (ΔN_{eff}) still fine, but m_N too small to explain neutrino oscillation anomalies

• Late kinetic decoupling can solve missing satellites problem

- Need new dark radiation particle as scattering partner
- Favorite scenario: *t*-channel mediator with mass ~ MeV
 → correct dark matter relic density
 - ~ DM self-interactions solve cusp-core, too big to fail problems
- Concrete model
 - $\bullet~$ Dark matter with mass $\sim \text{TeV}$
 - $\bullet~Sterile~neutrino~with~mass \lesssim eV \rightsquigarrow$ small hot DM component
 - $\bullet\,$ Gauge boson with mass $\sim MeV \rightsquigarrow$ secret interactions

- Need scattering partner $\tilde{\gamma}$ with large abundance until $T_{kd} \lesssim 1 \text{ keV} \rightarrow \text{photon}$, (SM) neutrino, dark radiation
- Here: classification of all minimal possibilities

Bringmann, Ihle, JK, Walia, PRD 94 (2016)

- Need scattering partner γ̃ with large abundance until T_{kd} ≤ 1 keV → photon, (SM) neutrino, dark radiation
- Here: classification of all minimal possibilities Bringmann, Ihle, JK, Walia, PRD 94 (2016)
- Scattering amplitude close to kinetic decoupling:

$$|\mathcal{M}|^{2} \simeq c_{n} (E_{\tilde{\gamma}}/m_{\chi})^{n}$$

$$\rightsquigarrow M_{\text{cut}} \simeq M_{n} \left(\frac{T_{\tilde{\gamma}}}{T}\right)^{3\frac{n+4}{n+2}} \left(\frac{c_{n}}{10^{-3}}\right)^{\frac{3}{n+2}} \left(\frac{100 \text{ GeV}}{m_{\chi}}\right)^{3\frac{n+3}{n+2}}$$

$$\chi$$

$$\tilde{\gamma}$$

$$\tilde{\gamma}$$

 \rightarrow Need large coefficients c_n and/or light dark matter

Timeline

t \uparrow $\gtrsim m_{\chi} \sim$ TeV: thermalization of $U(1)_X$ sector $T_{\chi}^{\text{fo}} \sim m_{\chi}/25$: CDM freeze-out $T_x^{\text{dpl}} \gtrsim 10 \text{ GeV}$: $U(1)_X$ sector decoupling SM particles heat SM bath matter effects prevent N_1 overproduction $+ T_{\nu}^{\text{dpl}} \sim \text{MeV}$: active neutrino decoupling $\begin{array}{c|c} \mathbf{B} \\ \mathbf{N} \\$ $M + T_{eq} \sim 1$ eV: matter-radiation equality $\begin{array}{c|c} \mathbf{B} & T_{\gamma}^{\mathrm{dpl}} \sim 0.2 \text{ eV: photon decoupling} \\ & N_1 \text{ becomes non-relativistic} \\ \mathrm{CDM-CDM \ scattering \ via \ Yukawa \ potential} \\ \end{array}$ $\mathbf{\downarrow} \mathbf{T} T_0 \sim 0.2 \text{ meV: today}$

- Dirac fermion χ (dark matter), $m_{\chi} \sim {\rm TeV}$
- Gauge boson V, m_V ~ MeV
- Kinetic mixing $F^{\chi}_{\mu\nu}F^{\mu\nu}$, $F^{\chi}_{\mu\nu}Z^{\mu\nu}$ negligible
- Scalar Θ breaking $U(1)_X$, $\langle \Theta \rangle \sim MeV$
- Light sterile neutrino $N, m_N \lesssim eV$
- Heavier sterile neutrino N_2 , $m_{N_2} \sim \text{MeV} \rightsquigarrow$ cancel anomalies
- Scalar ξ , $\langle \xi \rangle < \langle \Theta \rangle \rightsquigarrow$ active-sterile neutrino mixing

$$\mathcal{L}_N \supset -rac{Y_M}{2} \Theta^\dagger \, \overline{N^c} N - rac{Y'_M}{2} \Theta \, \overline{N_2^c} N_2 - rac{Y_\nu}{\Lambda} \xi \widetilde{\phi} \, \overline{\ell_L} N + ext{h.c.}$$

Sterile Neutrino Production by Oscillations

- Standard scenario: mixing between active and sterile neutrinos
 → oscillations → ΔN_{eff} ≃ 1
- U(1)_X interactions → effective matter potential suppresses mixing
 → no production by oscillations for T ≥ MeV
 Hannestad, Hansen, Tram, PRL 112 (2014); Dasgupta, Kopp, PRL 112 (2014)
- *T* < MeV: mixing unsuppressed
 → additional production of sterile neutrinos via U(1)_X?
 Bringmann, Hasenkamp, JK, JCAP 07 (2014)
- Oscillations + U(1)_X-mediated scatterings NN → NN
 → N re-thermalize: T_N = T_ν
 Mirizzi, Mangano, Pisanti, Saviano, PRD 91 (2015); Tang, PLB 750 (2015)
- Irreversible process ~→ only kinetic equilibrium Chu, Dasgupta, Kopp, JCAP 10 (2015)
- $\rightsquigarrow \Delta N_{\text{eff}}|_{\text{CMB}} \simeq \text{const.}$, but $T_N \uparrow \rightsquigarrow m_s^{\text{eff}} \uparrow$ $\rightsquigarrow \text{Cosmology still fine, but neutrino anomalies not explained}$

$m_N \sim 1 \; { m eV} > T_{ m rec} \sim 0.3 \; { m eV}$

→ sterile neutrinos not highly relativistic during CMB epoch

Jacques, Krauss, Lunardini, PRD 87 (2013)

$$N_{ ext{eff}} = N_{ ext{eff}}^{ ext{rel}} \left(rac{3}{4} + rac{1}{4} \, rac{P_{m_N=1 \, ext{eV}}}{P_{m_N=0}}
ight)$$

 $\rightsquigarrow N_{\rm eff}\downarrow$

 \rightarrow even $\Delta N_{\text{eff}} < 0$ possible \rightarrow possible test for scenario

Mirizzi, Mangano, Pisanti, Saviano, PRD **91** (2015) Chu, Dasgupta, Kopp, JCAP **10** (2015)

Cosmological Mass Bound

- CMB + BAO $\rightsquigarrow m_s^{eff} <$ 0.38 eV at 95% CL Planck, A&A 594 (2016)
- Bound due to free-streaming of sterile neutrinos
- $U(1)_X$ interactions \rightsquigarrow free-streaming scale reduced
- Most sensitive constraints from Ly- α forest

Chu, Dasgupta, Kopp, JCAP 10 (2015)

 $\rightsquigarrow m_N \sim$ 1 eV can be consistent with cosmology