The XENON Dark Matter Project

Elena Aprile Columbia University

LAUNCH2017 @ MPIK, Heidelberg, September 15, 2017

Why Liquid Xenon for a Dark Matter Detector?

Selected Properties of Xe

Property	Value
Atomic Number (Z)	54
Atomic Weight (A)	131.30
Number of Electrons per En	ergy Level 2,8,18,18,8
Density (STP)	5.894 g/L
Boiling Point	−108.1 °C
Melting Point	−111.8 °C
Volume Ratio	519
Concentration in Air	0.0000087 % by volume

dense liquid for a massive WIMP target at reasonable cost (~1000\$/kg)

 Iarge nucleus and presence of isotopes with nuclear spin allow to probe SI and SD interactions with one target

+ we have improved technologies to keep it cold and clean over long time

no intrinsic radioactivity other than Kr85 which we know how to remove

two signals (ionization and scintillation) in response to radiation

A Time Projection Chamber to detect these two signals

The TPCs of the XENON Program

XENON10

XENON100

XENON1T

XENONnT

XENON1T: the next step in evolution

from Jelle Aalbers

The XENON collaboration

140 scientists

22 institutions

10 countries

The XENON1T Experiment www.xenon1t.org

The XENON1T Experiment www.xenon1t.org

The XENON1T Time Projec

248 3-inch, low-radioactivity PMTs arrang

3.2 t LXe @180 K ~1 meter drift length ~1 meter diameter

121 PMTs in the bottom array

11

MPIK: big contribution to the "eyes" of XENON1T

It takes ~600,000 liters of Xe gas to fill the detector with 3500 kg of LXe

and custom-developed systems to handle/ condense/purify/ keep Xe cold and clean

XENON1T Cryogenic Plants

XENON1T Science and calibration data-taking

- First science run: Nov 22, 2016 Jan 18, 2017 Blind Analysis completed May '17
- Second science run ongoing: >100 days (blinded) on tape Analysis in progress

ER and NR Response in SR0

- Full modeling of LXe and detector response in cS2_b vs cS1 space
- All parameters fitted with no significant deviation from priors

SR0 Background model

- 3-70 PE (5-40 keVnr) in 1042 kg FV
- ER and NR spectral shapes are from models fitted to data.Other background are data-driven
- most significant background (for >10 GeV WIMPs)

Background & Signal Rates	Total	Reference
Electronic recoils (ER)	62 ± 8	0.26 (+0.11)(-0.07)
Radiogenic neutrons (n)	0.05 ± 0.01	0.02
CNNS (v)	0.02	0.01
Accidental coincidences (acc)	0.22 ± 0.01	0.06
Wall leakage (<i>wall</i>)	0.52 ± 0.32	0.01
Anomalous (<i>anom</i>)	0.09 (+0.12)(-0.06)	0.01 ± 0.01
Total background	63 ± 8	0.36 (+0.11)(-0.07)

SR0 Data Unblinding

- Extended unbinned profile likelihood analysis
- Most significant ER & NR shape parameters included from cal. fits
- Background-only (no WIMPs) still best fit
- Uncertainties are nuisance parameters:
 - Background component rates
 - ER and NR band shape

Cut	Events remaining
All events (cS1 < 200 PE)	128144
Data quality, selection	48955
Fiducial volume	180
S1 range (3 <cs1< 70="" pe)<="" td=""><td>63</td></cs1<>	63

XENON1T First Result

XENON1T ER Background

²²²Rn (mainly from ²¹⁴Pb β-decay) is the most relevant source of ER background in most of the TPC.

Measured: (1.93 +/- 0.25) 10⁻⁴ events / (kg day keV) in 1042 kg FV and 5-40 keVnr ROI **Predicted** (considering the average 1.5 ppt of Kr in first run): (2.3 +/- 0.2) 10⁻⁴ events / (kg day keV) Lowest ER background ever achieved in a DM detector !

Next step: XENONnT to start in 2019

Radon Reduction for XENONnT

Radon source identified in XENON1T

Online Rn removal with distillation in XENON100 (Eur. Phys. J. C, 77:358, 2017)

Material selection with ²²²Rn screening

- · screening facilities with few atoms/probe sensitivity
- Replace parts with large Rn contribution
- Post-manufacturing surface treatment
- Reduction with high throughput online distillation
- · Goal: 1 μBq/kg

Rn screening facility @ MPIK

Summary

- The WIMP hypothesis is being tested with the first direct detection experiment using a ton-scale Xe target in a detector with the lowest-ever low-energy background of ~2mdru.
- The first results from a short run of XENON1T show the promise of this new experiment. With the additional exposure, still blinded, we will soon probe previously unexplored parameter space.
- With XENON1T and its upgrade to XENONnT, we have the potential to finally discover WIMPs or exclude their existence opening the door to new ideas on DM. At the same time the experience with XENON1T/nT will continue to inform the design of a future experimental effort such as DARWIN to reach the ultimate sensitivity.

