Coannihilation without chemical equilibrium

Mathias Garny (TUM Munich)

Heidelberg, LAUNCH, 15.09.17

based on 1705.09292

with Jan Heisig, Benedikt Lülf, Stefan Vogl

Dark Matter

Galactic (rotation curves)

Vera Rubin, Kent Ford 1970 Pato, locco, Bertone 1504.06325

Galaxy clusters

Fritz Zwicky 1933

Bullet Cluster, Clowe et al astro-ph/0608407

Cosmic microwave background

$$\begin{array}{rcl} \Omega_{cdm} h^2 & = & \frac{\rho_{cdm}}{10.50 \, {\rm GeV/m^3}} \\ & = & 0.1198 \pm 0.0015 \end{array}$$

Planck 1502.01589

Testing the WIMP hypothesis

Fermi, H.E.S.S., AMS02, IceCube, Planck..., CTA

XENON1T LUX

XENONnT DARWIN LZ

production at colliders

LHC, HL-LHC

More possibilities

interaction	mass				
with SM					
	Super Light	Light	Heavy		
Strong	x	x	MACHOs, black holes		
Weak	x	WIMP	WIMPZILLA		
Super Weak	Axion, sterile	gravitino, FIMP	PIDM		

not complete!

credit M. Sloth

FIMP vs WIMP

Hall, Jedamzik, March-Russell, West 0911.1120

FIMP vs WIMP

Hall, Jedamzik, March-Russell, West 0911.1120

FIMP vs WIMP

Hall, Jedamzik, March-Russell, West 0911.1120

Can we be in between?

Freeze-out

Lee-Weinberg equation for a single dark matter species $\chi\chi \rightarrow SM+SM'$

$$\dot{n}_{\chi} + 3Hn_{\chi} = -(n_{\chi}^2 - n_{eq}^2)\langle \sigma v \rangle$$

Dark matter + heavier BSM states χ_i

$$(m_i/m_{dm} \lesssim 1.5)$$

• Annihilation $\chi_i + \chi_j \rightarrow SM + SM'$

$$\dot{n}_i + 3Hn_i = -\sum_j (n_i n_j - n_i^{eq} n_j^{eq}) \langle \sigma_{ij} v_{ij} \rangle$$

Edsjo, Gondolo 97

Dark matter + heavier BSM states χ_i

$$(m_i/m_{dm} \lesssim 1.5)$$

- Annihilation $\chi_i + \chi_j \rightarrow SM + SM'$
- Conversion via (inverse) decay $\chi_i \leftrightarrow \chi_j + SM$
- Conversion via scattering $\chi_i + SM \leftrightarrow \chi_j + SM'$

$$\begin{split} \dot{n}_{i} + 3Hn_{i} &= -\sum_{j} (n_{i}n_{j} - n_{i}^{eq}n_{j}^{eq}) \langle \sigma_{ij} v_{ij} \rangle \\ &- \sum_{X \in \text{SM}, j} \Gamma_{i \to jX} n_{i}^{eq} \left(\frac{n_{i}}{n_{i}^{eq}} - \frac{n_{j}}{n_{j}^{eq}} \right) - (i \leftrightarrow j) \\ &- \sum_{X, Y \in \text{SM}, j} \sigma_{iX \to jY} n_{i}^{eq} n_{X}^{eq} \left(\frac{n_{i}}{n_{i}^{eq}} - \frac{n_{j}}{n_{j}^{eq}} \right) \end{split}$$

Edsjo, Gondolo 97

$$\sum_{j} n_{i}^{eq} n_{j}^{eq} \langle \sigma_{ij} v_{ij} \rangle \propto \exp\left(-\frac{m_{i} + m_{j}}{T}\right)$$
$$\sum_{X \in SM, j} \Gamma_{i \to jX} n_{i}^{eq} \propto \exp\left(-\frac{m_{i}}{T}\right)$$
$$\sum_{X, Y \in SM, j} \sigma_{iX \to jY} n_{i}^{eq} n_{X}^{eq} \propto \exp\left(-\frac{m_{i}}{T}\right)$$

$$\sum_{j} n_{i}^{eq} n_{j}^{eq} \langle \sigma_{ij} v_{ij} \rangle \propto \exp\left(-\frac{m_{i} + m_{j}}{T}\right)$$
$$\sum_{X \in SM, j} \Gamma_{i \to jX} n_{i}^{eq} \propto \exp\left(-\frac{m_{i}}{T}\right)$$
$$\sum_{X, Y \in SM, j} \sigma_{iX \to jY} n_{i}^{eq} n_{X}^{eq} \propto \exp\left(-\frac{m_{i}}{T}\right)$$

If conversion rates > Hubble expansion \Rightarrow chemical equilibrium

$$\frac{n_i}{n_j} = \frac{n_i^{eq}}{n_j^{eq}}$$

Coannihilation in chemical equilibrium

Reduce effectively to single Lee-Weinberg equation for $n = \sum_{i} n_i$

$$\dot{n} + 3Hn = -(n^2 - (n^{eq})^2)\langle \sigma v_{eff} \rangle$$

Effective annihilation cross section

$$\sigma v_{eff} = \sum_{ij} \sigma_{ij} v_{ij} \frac{n_i^{eq} n_j^{eq}}{(n^{eq})^2}$$

Conversion terms dropped out, not sensitive as long as rates are large enough

$$\sum_{j} n_{i}^{eq} n_{j}^{eq} \langle \sigma_{ij} \mathbf{v}_{ij} \rangle \propto |\mathcal{M}|_{ij \to SMSM'}^{2} \exp\left(-\frac{m_{i} + m_{j}}{T}\right)$$
$$\sum_{X \in SM, j} \Gamma_{i \to jX} n_{i}^{eq} \propto |\mathcal{M}|_{i \to jSM}^{2} \exp\left(-\frac{m_{i}}{T}\right)$$
$$\sum_{X, Y \in SM, j} \sigma_{iX \to jY} n_{i}^{eq} n_{X}^{eq} \propto |\mathcal{M}|_{iSM \to jSM'}^{2} \exp\left(-\frac{m_{i}}{T}\right)$$

Rates depend also on matrix elements \Rightarrow chemical equilibrium not guaranteed in general

Example

- Majorana fermion $\chi \equiv (1_c, 1_L, 0)$
- Coupling to RH quark q_R (e.g. bottom b_R)
- Scalar mediator $\tilde{b} \equiv (\bar{3}_c, 1_L, -Y_q)$

$$\mathcal{L}_{int}^{\textit{fermion}} = \lambda_{\chi} \bar{\chi} q_R \tilde{b} + h.c.$$

• Three parameters: m_{χ} , $m_{\tilde{b}}$, coupling λ_{χ}

Example

- Majorana fermion $\chi \equiv (1_c, 1_L, 0)$
- Coupling to RH quark q_R (e.g. bottom b_R)
- Scalar mediator $\tilde{b} \equiv (\bar{3}_c, 1_L, -Y_q)$

$$\mathcal{L}_{int}^{\textit{fermion}} = \lambda_{\chi} ar{\chi} q_R ar{b} + h.c.$$

- Three parameters: m_{χ} , $m_{\tilde{b}}$, coupling λ_{χ}
- Contains MSSM with bino-like neutralino, $\tilde{b} = squark$

$$\lambda_{\chi} = \sqrt{2}g' Y_{\tilde{b}} \approx \left\{ \begin{array}{ll} 0.33 & \text{up-type} \\ 0.16 & \text{down-type} \end{array} \right.$$

DM coupling to u-quarks

MG, Ibarra, Vogl 1503.01500

DM coupling to u-quark (prospects)

MG, Ibarra, Vogl 1503.01500

DM coupling to u-quarks

MG, Ibarra, Vogl 1503.01500

(Co-)annihilation processes

initial state		final state		scaling
χ	χ	b	Б	λ_{χ}^4
X	ĩ	b W ⁻	g, γ, Z, H t, u, c	$\lambda_{\chi}^2 g_s^2$
ъ	\widetilde{b}^{\dagger}	V 9 Z 1	V	g_s^4

Relic density if chemical equilibrium holds

$$\Omega_{\chi}h^2 \sim \frac{1}{\sigma v_{eff}} = \frac{m_{\chi}^2}{\lambda_{\chi}^4 C_{\chi\chi} + \lambda_{\chi}^2 g_s^2 C_{\chi\widetilde{b}} + g_s^4 C_{\widetilde{b}\widetilde{b}}}$$

QCD-mediated channel $\propto g_s^4$ can lead to $\Omega_\chi h^2 < 0.12$ even for $\lambda_\chi \ll 1$

Conversion processes

initial state		final state		scaling
χ	$ \begin{array}{c} b \\ g, \gamma, Z, H \\ W^{-} \\ t, u, c \end{array} $	b	$ \begin{array}{c} g, \gamma, Z, H \\ \hline b \\ \hline \overline{t}, \overline{u}, \overline{c} \\ W^+ \end{array} $	λ_{χ}^2
		χ	b	λ_{χ}^2

Conversions become inefficient for $\lambda_{\chi} \rightarrow 0 \Rightarrow$ deviation from chemical equilibrium needs to be taken into account for $\Gamma_{conv} \sim H$

Rates vs
$$x = m_{\chi}/T$$

x

 $m_\chi = 500$ GeV, $m_{\widetilde{b}} = 510$ GeV

MG, Heisig, Lülf, Vogl 1705.09292

Relic density vs coupling λ_{χ}

Measured abundance can be obtained by allowing the 'right' amount of contact between χ and \widetilde{b} $$_{\rm MG,\ Heisig,\ Lilf,\ Vogl\ 1705.09292}$$

Freeze-out w/o chemical equilibrium

x

$$m_{\chi}=500$$
 GeV, $m_{\widetilde{b}}=510$ GeV

MG, Heisig, Lülf, Vogl 1705.09292

Independence of initial condition

Very weakly coupled, but still thermalized at early times \Rightarrow no dependence on initial abundance MG, Heisig, Lülf, Vogl 1705.09292

kinetic equilibrium

DM coupling to u-quarks

Signatures

- Small coupling avoids constraints from DD, ID
- \blacktriangleright Coloured mediator \widetilde{b} produced at LHC, macroscopic decay length $\widetilde{b} \to \chi b$
- Ionizing track in detector (R-hadron)
- For $\Omega_{\chi} = 0.12$, decay length of order *cm* to *m*
- $\blacktriangleright \Rightarrow$ need to re-interpret R-hadron analyses to account for decay inside detector

R-hadron LHC constraints

MG, Heisig, Lülf, Vogl 1705.09292

Conclusion

- Usual treatment of coannihilations relies on assumption of chemical equilibrium
- Often justified, but not always
- ► Freeze-out w/o chemical equilibrium can explain dark matter abundance for very weakly coupled dark matter particle, and strongly coupled mediator ⇒ Long-lived states at LHC, no signal in DD/ID
- Required coupling lies between typical FIMP and WIMP
- Preserves predictivity of WIMPs (independence of ICs)
- ► Not limited to example shown here, 'co-scattering' (see e.g. D'Agnolo, Pappadopulo, Ruderman 1705.08450)

BE w/o chemical and kinetic equilibrium

BE w/o chemical and kinetic equilibrium

BE w/o chemical and kinetic equilibrium

CMS R-hadron reinterpretation

BE w/o chemical equilibrium

$$\begin{split} \frac{\mathrm{d}Y_{\chi}}{\mathrm{d}x} &= \frac{1}{3H} \frac{\mathrm{d}s}{\mathrm{d}x} \quad \left[\begin{array}{c} \left\langle \sigma_{\chi\chi} \nu \right\rangle \left(Y_{\chi}^{2} - Y_{\chi}^{\mathrm{eq}\,2}\right) + \left\langle \sigma_{\chi\tilde{b}} \nu \right\rangle \left(Y_{\chi}Y_{\tilde{b}} - Y_{\chi}^{\mathrm{eq}}Y_{\tilde{b}}^{\mathrm{eq}}\right) \right. \\ &+ \frac{\Gamma_{\chi \to \tilde{b}}}{s} \left(Y_{\chi} - Y_{\tilde{b}}\frac{Y_{\chi}^{\mathrm{eq}}}{Y_{\tilde{b}}^{\mathrm{eq}}}\right) - \frac{\Gamma_{\tilde{b}}}{s} \left(Y_{\tilde{b}} - Y_{\chi}\frac{Y_{\tilde{b}}^{\mathrm{eq}}}{Y_{\chi}^{\mathrm{eq}}}\right) \\ &+ \left\langle \sigma_{\chi\chi \to \tilde{b}\tilde{b}^{\dagger}} \nu \right\rangle \left(Y_{\chi}^{2} - Y_{\tilde{b}}^{2}\frac{Y_{\chi}^{\mathrm{eq}\,2}}{Y_{\tilde{b}}^{\mathrm{eq}\,2}}\right) \right] \\ \\ \frac{\mathrm{d}Y_{\tilde{b}}}{\mathrm{d}x} &= \frac{1}{3H} \frac{\mathrm{d}s}{\mathrm{d}x} \quad \left[\begin{array}{c} \frac{1}{2} \left\langle \sigma_{\tilde{b}\tilde{b}^{\dagger}} \nu \right\rangle \left(Y_{\tilde{b}}^{2} - Y_{\tilde{b}}^{\mathrm{eq}\,2}\right) + \left\langle \sigma_{\chi\tilde{b}} \nu \right\rangle \left(Y_{\chi}Y_{\tilde{b}} - Y_{\chi}^{\mathrm{eq}}Y_{\tilde{b}}^{\mathrm{eq}}\right) \\ &- \frac{\Gamma_{\chi \to \tilde{b}}}{s} \left(Y_{\chi} - Y_{\tilde{b}}\frac{Y_{\chi}^{\mathrm{eq}}}{Y_{\tilde{b}}^{\mathrm{eq}}}\right) + \frac{\Gamma_{\tilde{b}}}{s} \left(Y_{\tilde{b}} - Y_{\chi}\frac{Y_{\tilde{b}}^{\mathrm{eq}}}{Y_{\chi}^{\mathrm{eq}}}\right) \\ &- \left\langle \sigma_{\chi\chi \to \tilde{b}\tilde{b}^{\dagger}} \nu \right\rangle \left(Y_{\chi}^{2} - Y_{\tilde{b}}^{2}\frac{Y_{\chi}^{\mathrm{eq}\,2}}{Y_{\tilde{b}}^{\mathrm{eq}\,2}}\right) \right] \end{split}$$