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Dark Matter
I Galactic (rotation curves)

Vera Rubin, Kent Ford 1970

Pato, Iocco, Bertone 1504.06325

I Galaxy clusters
Fritz Zwicky 1933

Bullet Cluster, Clowe et al astro-ph/0608407

I Cosmic microwave background

Ωcdmh
2 =

ρcdm

10.50GeV/m3

= 0.1198± 0.0015

Planck 1502.01589



Testing the WIMP hypothesis

Fermi, H.E.S.S., AMS02, IceCube, Planck. . . , CTA

XENON1T
LUX
. . .

XENONnT
DARWIN
LZ

LHC, HL-LHC



More possibilities

interaction mass
with SM

Super Light Light Heavy
Strong x x MACHOs, black holes
Weak x WIMP WIMPZILLA

Super Weak Axion, sterile gravitino, FIMP PIDM

not complete! credit M. Sloth
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Can we be in between?
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Freeze-out

Lee-Weinberg equation for a single dark matter species χχ→ SM+SM′

ṅχ + 3Hnχ = −(n2χ − n2eq)〈σv〉



Coannihilation

Dark matter + heavier BSM states χi (mi/mdm . 1.5)

I Annihilation χi + χj → SM + SM’

I Conversion via (inverse) decay χi ↔ χj + SM

I Conversion via scattering χi + SM↔ χj + SM’
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Coannihilation

∑

j
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If conversion rates > Hubble expansion ⇒ chemical equilibrium
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Coannihilation in chemical equilibrium

Reduce effectively to single Lee-Weinberg equation for n =
∑

i ni

ṅ + 3Hn = −(n2 − (neq)2)〈σveff 〉

Effective annihilation cross section

σveff =
∑

ij

σijvij

neq
i neq

j

(neq)2

Conversion terms dropped out, not sensitive as long as rates are large

enough



Coannihilation

∑

j

neq
i neq

j 〈σijvij〉 ∝ |M|2ij→SMSM′ exp

(
−mi + mj

T

)

∑

X∈SM, j

Γi→jXn
eq
i ∝ |M|2i→jSM exp

(
−mi

T

)

∑

X ,Y∈SM, j

σiX→jY n
eq
i neq

X ∝ |M|2iSM→jSM′ exp
(
−mi

T

)

Rates depend also on matrix elements ⇒ chemical equilibrium not

guaranteed in general



Example

I Majorana fermion χ ≡ (1c , 1L, 0)

I Coupling to RH quark qR (e.g. bottom bR )

I Scalar mediator b̃ ≡ (3̄c , 1L,−Yq)

Lfermion
int = λχχ̄qR b̃ + h.c .

I Three parameters: mχ, mb̃, coupling λχ

I Contains MSSM with bino-like neutralino, b̃ = squark

λχ =
√

2g ′Yb̃ ≈
{

0.33 up-type
0.16 down-type
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(Co-)annihilation processes

initial state final state scaling

χ χ b b̄ λ4χ

χ b̃
b g , γ,Z ,H

λ2χg
2
sW− t, u, c

b̃ b̃†

V V

g4
s

q q̄
Z H
l l̄

Relic density if chemical equilibrium holds

Ωχh
2 ∼ 1

σveff
=

m2
χ

λ4χ Cχχ + λ2χ g
2
s Cχb̃ + g4

s Cb̃b̃

QCD-mediated channel ∝ g4
s can lead to Ωχh

2 < 0.12 even for λχ � 1



Conversion processes

initial state final state scaling

χ

b

b̃

g , γ,Z ,H

λ2χ
g , γ,Z ,H b̄

W− t̄, ū, c̄
t, u, c W+

b̃ χ b λ2χ

Conversions become inefficient for λχ → 0 ⇒ deviation from chemical

equilibrium needs to be taken into account for Γconv ∼ H



Rates vs x = mχ/T
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FIG. 1. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative

to the Hubble rate as a function of x = mχ/T for mχ = 500 GeV, m�b = 510 GeV, λχ ≈ 2.6 × 10−7
. Right panel: Evolution of

the resulting abundance (solid curves) of �b (blue) and χ (red). The dashed curves denote the equilibrium abundances.

the freeze-out of a typical thermal relic or the �b freeze-

out. The slow decline of the χ abundance after this point

is due to the close-to inefficient conversion terms which

remove over-abundant χs.

In Fig. 2 we show the dependence of the final freeze-

out density on the coupling λχ (red solid line). For large

enough coupling, the solution coincides with the result

that would be obtained when assuming CE (blue dotted

line). The relic density is in this case largely set by the

strength of �b self-annihilation into gluons. When lowering

the value of λχ, conversions χ ↔ �b become less efficient

and we end up with a relic density that lies above the

value expected for full CE. For the benchmark scenario

shown in Fig. 2, the freeze-out density matches the value

determined by Planck [14] for a coupling of λχ ≈ 2.6 ×
10−7

.

Above we assumed that both χ and �b have thermal

abundances for T � mχ. While this assumption is cer-

tainly well justified for �b, one may question the depen-

dence on the initial condition for χ due to its small cou-

pling to the thermal bath. We check the dependence

on this assumption by varying the initial abundance at

T = mχ between (0− 100) × Y eq
χ . The evolution of

the abundances for our benchmark point are shown in

Fig. 3, for early times (x < 20). We find that all trajec-

tories converge before x <∼ 5, thereby effectively removing

any dependence of the final density on the initial condi-

tion at x = 1 (for a discussion of kinetic equilibration,

see [13]). The dependence of the final freeze-out den-

sity on the initial condition is also indicated in Fig. 2 by

the area shaded in red, and is remarkably small. There-

fore, conversion-driven freeze-out is largely insensitive to

details of the thermal history prior to freeze-out and in

particular to a potential production during the reheating

process. Note that this feature distinguishes conversion-

driven freeze-out from scenarios for which DM has an

even weaker coupling such that it was never in thermal

contact (e.g. freeze-in production [15]). Thus, while re-

quiring a rather weak coupling, the robustness of the con-

ventional freeze-out paradigm is preserved in the scenario

considered here.

As discussed before, conversions χ ↔ �b are driven by

two types of processes, decay and scattering. It turns

out that quantitatively both are important for determin-

ing the freeze-out density. To illustrate the importance of

scattering processes, we show the freeze-out density that

would be obtained when only taking decays into account

by the gray dashed line in Fig. 2. Furthermore, the gray

shaded area indicates the dependence on initial condi-

tions that would result neglecting scatterings. We find

that scattering processes, that are active at small x, are

responsible for wiping out the dependence on the initial

abundance in the full solution of the coupled Boltzmann

equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent

with a relic density that matches the DM density mea-

sured by Planck, Ωh2 = 0.1198 ± 0.0015 [14]. In the

considered scenario, for small couplings, �b�b†
annihilation

is the only efficient annihilation channel. Hence the min-

imal relic density that can be obtained for a certain point

in the mχ-m�b plane is the one for a coupling λχ that just

provides CE (but is still small enough so that χχ- and

χ�b-annihilation is negligible). The curve for which this

choice provides the right relic density defines the bound-

ary of the valid parameter space and is shown as a black,

solid curve in Fig. 4. Below this curve a choice of λχ

sufficiently large to support CE would undershoot the

relic density. In this region a solution with small λχ ex-

ists that renders the involved conversion rates just large

enough to allow for the right portion of thermal contact

mχ = 500 GeV, mb̃ = 510 GeV MG, Heisig, Lülf, Vogl 1705.09292
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FIG. 2. Relic density as a function of the coupling λχ, for
mχ = 500 GeV, m�b = 510 GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Yχ(1) = (0−100) × Y eq

χ (1). The central
curves correspond to Yχ(1) = Y eq

χ (1).
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FIG. 3. Dependence on the initial conditions for Yχ at x = 1.
We show solutions for the choices Yχ(1) = [0, 1, 100]×Y eq

χ (1),
and otherwise the same parameters as in Fig. 1.

between �b and χ to provide the right relic density. The
value of λχ ranges from 10−7 to 10−6 (from small to large
mχ). These values lie far beyond the sensitivity of direct
or indirect detection experiments.

For the solutions providing the right relic density, dur-
ing typical freeze-out (i.e. when T ∼ mχ/30) the con-
version rates have to be on the edge of being efficient,
cf. Eq. (5). From this simple relation (and assuming that
the decay width, Γ�b, is similar in size as the other con-
version rates) we can already infer that the decay length
of �b is of the order of 1–100 cm for a DM particle with a
mass of a few hundred GeV which predicts the signature
of disappearing tracks or displaced vertices at the LHC.

The decay length in our model is shown as the gray

∆
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FIG. 4. Viable parameter space in the plane spanned by
mχ and ∆mχ�b = m�b − mχ. We adjust λχ such that Ωh2 =
0.12. Above the thick black curve CE holds, while below this
curve CE breaks down and the freeze-out is conversion-driven.
The corresponding coupling λχ/10−7 (decay length cτ) of the
sbottom is denoted by the thin green (gray) dotted lines. The
blue dashed (dot-dashed) curve shows our estimates for the
limits from R-hadrons searches at 8 (13)TeV. The Constraints
from monojet searches is shown as the red dot-dot-dashed
curve.

dotted lines in Fig. 4. It ranges from 25 cm to below
2.5 cm for increasing mass difference (the dependence on
the absolute mass scale is more moderate).

In proton collisions at the LHC pairs of �bs could be
copiously produced. They will hadronize to form R-
hadrons [16] which will, for the relevant decay length,
either decay inside or traverse the sensitive parts of the
detector. Accordingly, the signatures of displaced ver-
tices and (disappearing) highly ionizing tracks provide
promising discovery channels. Similar searches have, e.g.,
been performed for a gluino R-hadron (decaying into en-
ergetic jets) [17] or a purely electrically charged heavy
stable particle [18, 19] but have not been performed for
the model under consideration (see also [20, 21] for a
recent account on simplified DM models providing dis-
placed vertices). However, there are two types of searches
that already impose constraints on the model.

On the one hand, searches for detector-stable R-
hadrons [22–25] can be reinterpreted for finite decay
lengths by convoluting the signal efficiency with the frac-
tion of R-hadrons that decay after traversing the relevant
parts of the detector. This reinterpretation provides lim-
its down to a decay length of cτ � 0.1 m for a R-hadron
mass around 100GeV [13] and can be used to estimate
excluded parameter regions in our model. The result-
ing limits obtained from the 8 TeV [22] and 13TeV [23]

Measured abundance can be obtained by allowing the ‘right’ amount of

contact between χ and b̃ MG, Heisig, Lülf, Vogl 1705.09292
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FIG. 1. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative

to the Hubble rate as a function of x = mχ/T for mχ = 500 GeV, m�b = 510 GeV, λχ ≈ 2.6 × 10−7
. Right panel: Evolution of

the resulting abundance (solid curves) of �b (blue) and χ (red). The dashed curves denote the equilibrium abundances.

the freeze-out of a typical thermal relic or the �b freeze-

out. The slow decline of the χ abundance after this point

is due to the close-to inefficient conversion terms which

remove over-abundant χs.

In Fig. 2 we show the dependence of the final freeze-

out density on the coupling λχ (red solid line). For large

enough coupling, the solution coincides with the result

that would be obtained when assuming CE (blue dotted

line). The relic density is in this case largely set by the

strength of �b self-annihilation into gluons. When lowering

the value of λχ, conversions χ ↔ �b become less efficient

and we end up with a relic density that lies above the

value expected for full CE. For the benchmark scenario

shown in Fig. 2, the freeze-out density matches the value

determined by Planck [14] for a coupling of λχ ≈ 2.6 ×
10−7

.

Above we assumed that both χ and �b have thermal

abundances for T � mχ. While this assumption is cer-

tainly well justified for �b, one may question the depen-

dence on the initial condition for χ due to its small cou-

pling to the thermal bath. We check the dependence

on this assumption by varying the initial abundance at

T = mχ between (0− 100) × Y eq
χ . The evolution of

the abundances for our benchmark point are shown in

Fig. 3, for early times (x < 20). We find that all trajec-

tories converge before x <∼ 5, thereby effectively removing

any dependence of the final density on the initial condi-

tion at x = 1 (for a discussion of kinetic equilibration,

see [13]). The dependence of the final freeze-out den-

sity on the initial condition is also indicated in Fig. 2 by

the area shaded in red, and is remarkably small. There-

fore, conversion-driven freeze-out is largely insensitive to

details of the thermal history prior to freeze-out and in

particular to a potential production during the reheating

process. Note that this feature distinguishes conversion-

driven freeze-out from scenarios for which DM has an

even weaker coupling such that it was never in thermal

contact (e.g. freeze-in production [15]). Thus, while re-

quiring a rather weak coupling, the robustness of the con-

ventional freeze-out paradigm is preserved in the scenario

considered here.

As discussed before, conversions χ ↔ �b are driven by

two types of processes, decay and scattering. It turns

out that quantitatively both are important for determin-

ing the freeze-out density. To illustrate the importance of

scattering processes, we show the freeze-out density that

would be obtained when only taking decays into account

by the gray dashed line in Fig. 2. Furthermore, the gray

shaded area indicates the dependence on initial condi-

tions that would result neglecting scatterings. We find

that scattering processes, that are active at small x, are

responsible for wiping out the dependence on the initial

abundance in the full solution of the coupled Boltzmann

equations.
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with a relic density that matches the DM density mea-

sured by Planck, Ωh2 = 0.1198 ± 0.0015 [14]. In the

considered scenario, for small couplings, �b�b†
annihilation

is the only efficient annihilation channel. Hence the min-

imal relic density that can be obtained for a certain point

in the mχ-m�b plane is the one for a coupling λχ that just

provides CE (but is still small enough so that χχ- and

χ�b-annihilation is negligible). The curve for which this

choice provides the right relic density defines the bound-

ary of the valid parameter space and is shown as a black,

solid curve in Fig. 4. Below this curve a choice of λχ

sufficiently large to support CE would undershoot the

relic density. In this region a solution with small λχ ex-

ists that renders the involved conversion rates just large

enough to allow for the right portion of thermal contact

mχ = 500 GeV, mb̃ = 510 GeV MG, Heisig, Lülf, Vogl 1705.09292



Independence of initial condition
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FIG. 2. Relic density as a function of the coupling λχ, for
mχ = 500 GeV, m�b = 510 GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Yχ(1) = (0−100) × Y eq

χ (1). The central
curves correspond to Yχ(1) = Y eq

χ (1).
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FIG. 3. Dependence on the initial conditions for Yχ at x = 1.
We show solutions for the choices Yχ(1) = [0, 1, 100]×Y eq

χ (1),
and otherwise the same parameters as in Fig. 1.

between �b and χ to provide the right relic density. The
value of λχ ranges from 10−7 to 10−6 (from small to large
mχ). These values lie far beyond the sensitivity of direct
or indirect detection experiments.

For the solutions providing the right relic density, dur-
ing typical freeze-out (i.e. when T ∼ mχ/30) the con-
version rates have to be on the edge of being efficient,
cf. Eq. (5). From this simple relation (and assuming that
the decay width, Γ�b, is similar in size as the other con-
version rates) we can already infer that the decay length
of �b is of the order of 1–100 cm for a DM particle with a
mass of a few hundred GeV which predicts the signature
of disappearing tracks or displaced vertices at the LHC.

The decay length in our model is shown as the gray
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FIG. 4. Viable parameter space in the plane spanned by
mχ and ∆mχ�b = m�b − mχ. We adjust λχ such that Ωh2 =
0.12. Above the thick black curve CE holds, while below this
curve CE breaks down and the freeze-out is conversion-driven.
The corresponding coupling λχ/10−7 (decay length cτ) of the
sbottom is denoted by the thin green (gray) dotted lines. The
blue dashed (dot-dashed) curve shows our estimates for the
limits from R-hadrons searches at 8 (13)TeV. The Constraints
from monojet searches is shown as the red dot-dot-dashed
curve.

dotted lines in Fig. 4. It ranges from 25 cm to below
2.5 cm for increasing mass difference (the dependence on
the absolute mass scale is more moderate).

In proton collisions at the LHC pairs of �bs could be
copiously produced. They will hadronize to form R-
hadrons [16] which will, for the relevant decay length,
either decay inside or traverse the sensitive parts of the
detector. Accordingly, the signatures of displaced ver-
tices and (disappearing) highly ionizing tracks provide
promising discovery channels. Similar searches have, e.g.,
been performed for a gluino R-hadron (decaying into en-
ergetic jets) [17] or a purely electrically charged heavy
stable particle [18, 19] but have not been performed for
the model under consideration (see also [20, 21] for a
recent account on simplified DM models providing dis-
placed vertices). However, there are two types of searches
that already impose constraints on the model.

On the one hand, searches for detector-stable R-
hadrons [22–25] can be reinterpreted for finite decay
lengths by convoluting the signal efficiency with the frac-
tion of R-hadrons that decay after traversing the relevant
parts of the detector. This reinterpretation provides lim-
its down to a decay length of cτ � 0.1 m for a R-hadron
mass around 100GeV [13] and can be used to estimate
excluded parameter regions in our model. The result-
ing limits obtained from the 8 TeV [22] and 13TeV [23]

Very weakly coupled, but still thermalized at early times ⇒ no

dependence on initial abundance MG, Heisig, Lülf, Vogl 1705.09292



kinetic equilibrium

4

Iterative solution of the coupled system

The solution Eq. (13) of the Boltzmann equation for

fχ(q, x) requires as an input the evolution of the mediator

abundance, Y�b(x). The latter can be obtained by solving

the corresponding integrated Boltzmann equation, which

in turn involves Yχ(x), that is determined by integrat-

ing fχ(q, x) over all momentum modes. Therefore the

equations for fχ(q, x) and Y�b(x) form a coupled set of

equations.

Here we solve this coupled set of differential equations

in an iterative process. We start with an initial “guess” for

Y�b(x), which we take to be the solution when assuming

kinetic equilibrium (see below for a discussion of differ-

ent choices). We then solve for fχ(q, x) on a momentum-

grid, and numerically compute Yχ(x) using Eq. (13) as

described in the last subsection. With this solution for

Yχ(x) we recalculate Y�b(x) using the integrated Boltz-

mann equation. We subsequently iterate between solv-

ing for fχ(q, x) and Y�b(x), until we encounter sufficient

convergence. In order to solve the differential Boltzmann

equation in an acceptable time, we neglect the bottom

mass and choose heff and geff to be evaluated at x = 50
and constant for all times. We do not expect a strong

dependence on these simplifications.

The resulting evolution of the abundance Yχ(x) for

the benchmark point mχ = 500 GeV, m�b = 510 GeV is
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FIG. 2. Upper panel: Evolution for the resulting abundance
of �b (blue) and χ (red) of the differential (solid) and integrated
(dotted) Boltzmann equation. The dashed curves denote the
equilibrium abundances. Lower panel: Ratio of the two abun-
dances for χ. The red solid line shows the converged result
while the orange thick and thin curves denote the first and
the following iterations, respectively. Only the decay term is
considered.

shown in Fig. 2 (upper panel) as a red solid curve. We

compare the result to the solution of the coupled inte-

grated Boltzmann equation (red dotted curve) obtained

under the same approximations. We adjust the coupling

λχ = 4.03×10−7
such as to obtain the measured DM relic

density for the solution of the coupled integrated Boltz-

mann equation. The lower panel of Fig. 2 shows the ra-

tio of the differential and integrated solutions for Yχ(x).
While the dark matter abundance differs by up to a fac-

tor of two at intermediate times, the final relic abundance

agrees well with the corresponding result when assuming

kinetic equilibrium, with deviations below the 10% level.

The main reason is that, for the process and the kine-

matical situation that is relevant here, the collision term

does not depend strongly on the momentum mode (see

Fig. 3, dot-dashed lines). In the same figure, we also

show the result for fχ(q, x) at various times x (blue lines),

which indeed differs from an equilibrium distribution (in-
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FIG. 3. Collision operator (normalized by the Hubble rate,
green dot-dashed curves) and the phase space distribution of
the differential (blue solid) and integrated (red dashed) solu-
tion as a function of the momentum mode q for three differ-
ent times, x = 15, 63 and 100. The phase space distribution
are normalized to the integral over the differential solution,
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χ dq. Only the decay term is considered.
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Signatures

I Small coupling avoids constraints from DD, ID

I Coloured mediator b̃ produced at LHC, macroscopic decay length
b̃ → χb

I Ionizing track in detector (R-hadron)

I For Ωχ = 0.12, decay length of order cm to m

I ⇒ need to re-interpret R-hadron analyses to account for decay
inside detector
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FIG. 2. Relic density as a function of the coupling λχ, for
mχ = 500 GeV, m�b = 510 GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Yχ(1) = (0−100) × Y eq

χ (1). The central
curves correspond to Yχ(1) = Y eq

χ (1).
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FIG. 3. Dependence on the initial conditions for Yχ at x = 1.
We show solutions for the choices Yχ(1) = [0, 1, 100]×Y eq

χ (1),
and otherwise the same parameters as in Fig. 1.

between �b and χ to provide the right relic density. The
value of λχ ranges from 10−7 to 10−6 (from small to large
mχ). These values lie far beyond the sensitivity of direct
or indirect detection experiments.

For the solutions providing the right relic density, dur-
ing typical freeze-out (i.e. when T ∼ mχ/30) the con-
version rates have to be on the edge of being efficient,
cf. Eq. (5). From this simple relation (and assuming that
the decay width, Γ�b, is similar in size as the other con-
version rates) we can already infer that the decay length
of �b is of the order of 1–100 cm for a DM particle with a
mass of a few hundred GeV which predicts the signature
of disappearing tracks or displaced vertices at the LHC.

The decay length in our model is shown as the gray

!"" #""" #!"" $"""
"

!

#"

#!

$"

$!

%"

%!

∆
m

χ
� b
[G

eV
]

mχ [GeV]

2
3

5

8

25 cm

10 cm

5 cm

2.5 cm

↓ 4-body decay

↑
C
E

fulfi
lled

Ωh2 = 0.12

FIG. 4. Viable parameter space in the plane spanned by
mχ and ∆mχ�b = m�b − mχ. We adjust λχ such that Ωh2 =
0.12. Above the thick black curve CE holds, while below this
curve CE breaks down and the freeze-out is conversion-driven.
The corresponding coupling λχ/10−7 (decay length cτ) of the
sbottom is denoted by the thin green (gray) dotted lines. The
blue dashed (dot-dashed) curve shows our estimates for the
limits from R-hadrons searches at 8 (13)TeV. The Constraints
from monojet searches is shown as the red dot-dot-dashed
curve.

dotted lines in Fig. 4. It ranges from 25 cm to below
2.5 cm for increasing mass difference (the dependence on
the absolute mass scale is more moderate).

In proton collisions at the LHC pairs of �bs could be
copiously produced. They will hadronize to form R-
hadrons [16] which will, for the relevant decay length,
either decay inside or traverse the sensitive parts of the
detector. Accordingly, the signatures of displaced ver-
tices and (disappearing) highly ionizing tracks provide
promising discovery channels. Similar searches have, e.g.,
been performed for a gluino R-hadron (decaying into en-
ergetic jets) [17] or a purely electrically charged heavy
stable particle [18, 19] but have not been performed for
the model under consideration (see also [20, 21] for a
recent account on simplified DM models providing dis-
placed vertices). However, there are two types of searches
that already impose constraints on the model.

On the one hand, searches for detector-stable R-
hadrons [22–25] can be reinterpreted for finite decay
lengths by convoluting the signal efficiency with the frac-
tion of R-hadrons that decay after traversing the relevant
parts of the detector. This reinterpretation provides lim-
its down to a decay length of cτ � 0.1 m for a R-hadron
mass around 100GeV [13] and can be used to estimate
excluded parameter regions in our model. The result-
ing limits obtained from the 8 TeV [22] and 13TeV [23]
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Conclusion

I Usual treatment of coannihilations relies on assumption of chemical
equilibrium

I Often justified, but not always

I Freeze-out w/o chemical equilibrium can explain dark matter
abundance for very weakly coupled dark matter particle, and
strongly coupled mediator ⇒ Long-lived states at LHC, no signal in
DD/ID

I Required coupling lies between typical FIMP and WIMP

I Preserves predictivity of WIMPs (independence of ICs)

I Not limited to example shown here, ‘co-scattering’ (see e.g. D’Agnolo,

Pappadopulo, Ruderman 1705.08450)
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Iterative solution of the coupled system

The solution Eq. (13) of the Boltzmann equation for

fχ(q, x) requires as an input the evolution of the mediator

abundance, Y�b(x). The latter can be obtained by solving

the corresponding integrated Boltzmann equation, which

in turn involves Yχ(x), that is determined by integrat-

ing fχ(q, x) over all momentum modes. Therefore the

equations for fχ(q, x) and Y�b(x) form a coupled set of

equations.

Here we solve this coupled set of differential equations

in an iterative process. We start with an initial “guess” for

Y�b(x), which we take to be the solution when assuming

kinetic equilibrium (see below for a discussion of differ-

ent choices). We then solve for fχ(q, x) on a momentum-

grid, and numerically compute Yχ(x) using Eq. (13) as

described in the last subsection. With this solution for

Yχ(x) we recalculate Y�b(x) using the integrated Boltz-

mann equation. We subsequently iterate between solv-

ing for fχ(q, x) and Y�b(x), until we encounter sufficient

convergence. In order to solve the differential Boltzmann

equation in an acceptable time, we neglect the bottom

mass and choose heff and geff to be evaluated at x = 50
and constant for all times. We do not expect a strong

dependence on these simplifications.

The resulting evolution of the abundance Yχ(x) for

the benchmark point mχ = 500 GeV, m�b = 510 GeV is
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FIG. 2. Upper panel: Evolution for the resulting abundance
of �b (blue) and χ (red) of the differential (solid) and integrated
(dotted) Boltzmann equation. The dashed curves denote the
equilibrium abundances. Lower panel: Ratio of the two abun-
dances for χ. The red solid line shows the converged result
while the orange thick and thin curves denote the first and
the following iterations, respectively. Only the decay term is
considered.

shown in Fig. 2 (upper panel) as a red solid curve. We

compare the result to the solution of the coupled inte-

grated Boltzmann equation (red dotted curve) obtained

under the same approximations. We adjust the coupling

λχ = 4.03×10−7
such as to obtain the measured DM relic

density for the solution of the coupled integrated Boltz-

mann equation. The lower panel of Fig. 2 shows the ra-

tio of the differential and integrated solutions for Yχ(x).
While the dark matter abundance differs by up to a fac-

tor of two at intermediate times, the final relic abundance

agrees well with the corresponding result when assuming

kinetic equilibrium, with deviations below the 10% level.

The main reason is that, for the process and the kine-

matical situation that is relevant here, the collision term

does not depend strongly on the momentum mode (see

Fig. 3, dot-dashed lines). In the same figure, we also

show the result for fχ(q, x) at various times x (blue lines),

which indeed differs from an equilibrium distribution (in-
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FIG. 3. Collision operator (normalized by the Hubble rate,
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the differential (blue solid) and integrated (red dashed) solu-
tion as a function of the momentum mode q for three differ-
ent times, x = 15, 63 and 100. The phase space distribution
are normalized to the integral over the differential solution,
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FIG. 4. Evolution of the abundance of �b (blue solid) and χ (red solid) for two different choices of the starting point of the

iteration, shown in the two panels, respectively. Left panel: Initial mediator abundance set to the equilibrium abundance,

Y�b(x) = Y eq
�b . The thick and thin orange solid curves denote the first and the following iterations, respectively. The orange

dotted curve shows the integrated solution obtained for Y�b(x) = Y eq
�b . Right panel: Initial χ abundance set to the equilibrium

abundance at relativistic temperatures, Yχ(x) = Y eq
χ (x <∼ 1). The thick and thin orange solid curves denote the initial

abundance and the following iterations, respectively. Only the decay term is considered. As in Fig. 2 the dashed curves denote

the equilibrium abundances.

dicated by the red dashed lines) at intermediate times
(upper and middle panel in Fig. 3). Nevertheless, around
the time when the dark matter abundance freezes out,
the remaining decays of thermalized �b tend to restore an
equilibrium distribution (lowest panel).

It is interesting to obeserve that the total abundance
obtained from the unintegrated Boltzmann equation is
slightly below the result when assuming kinetic equilib-
rium. This can also be understood from Fig. 3. For high
temperatures, the momentum modes obtained from the
differential solution essentially change only due to red-
shift. In contrast, the kinetic equilibrium distribution
populates somewhat higher modes. By the time when
conversion gets efficient, the collision term is larger for
smaller momentum modes. Therefore, the conversion
into �bs is stronger for the differential solution, rendering
a slightly smaller abundance.

Let us now discuss the impact of the initial “guess” for
Y�b(x) used for the iterative solution. We check that the
converged result is independent of the starting point of
the iteration by using two rather different initial abun-
dances. First, we use the equilibrium abundance Y eq

�b (x)
as starting point. The results are shown in the left panel
of Fig. 4. The evolution of Yχ(x) obtained in the fist iter-
ation step is shown by the thick orange line, and the suc-
cessive iterations are indicated by the thin orange lines.
The final, converged result (thick red line) agrees well
with the result obtained in Fig. 2. The same is true for
Y�b(x) (solid blue line). On the other hand, we would like
to point out that the first iteration and the converged re-
sult are rather far apart. This means that it is crucial to
solve for the coupled set of equations, allowing for devi-
ations Y�b(x) �= Y eq

�b (x). For curiosity, we note that if one
would compare the differential with the integrated result

for Yχ(x) while fixing Y�b(x) = Y eq
�b (x), one would find

an O(10) difference in the final abundance (see orange
dotted versus solid line in the left panel of Fig. 4), while
the corresponding difference for the converged results is
below ∼ 10%. Hence, the partial freeze-out of the me-
diator �b and its subsequent decay into χ are crucial for
the conclusion that the impact of deviations from kinetic
equilibrium on the relic density is small.

Second, we consider an extreme possibility and initially
set Yχ(x) to be constant and equal to the relativistic
equilibrium density. In this case we start the iteration
with the computation of Y�b(x). The resulting iterative
solutions for Yχ(x) are shown in right panel of Fig. 4
(orange lines). Again, the converged result for Yχ(x) (red
solid line) and Y eq

�b (x) (solid blue line) agree well with
those shown in Fig. 2.

The convergence of the final relic density for the three
different choices of starting points is shown in Fig. 5.
Indeed, the converged results agree, indicating that the
iterative scheme is stable and leads to a unique result.

Next we want to check if the situation changes dras-
tically when including also 2 → 2 scattering processes.
Due to the increase in numerical complexity described
above, we consider the leading process χb ↔ �bg ex-
pected to capture the main effects. In order to estimate
the physical contributions from hard scatterings, we per-
form regularizations on the level of the scattering cross
section by introducing a cut-off smin = (m�b + 1 GeV)2

and additionally a regulator at matrix element level of
1/t2 → 1/(t2 +(1 GeV)4). In addition, we restrict the in-
tegration over the angle θt between b and g in the center-
of-mass frame to cos θt ∈ [−0.9, 0.9].

Again, we solve the couple system in an iterative ap-
proach as described above, but taking scatterings into ac-
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count. As before, we then compare the converged result

for the final relic density with the corresponding result

obtained when assuming kinetic equilibrium. We find

that the relative deviations in the resulting relic density

become even smaller as for the decay only case and stay

below 10%. Furthermore, the deviation for Yχ(x) for in-

termediate times become smaller. This is expected, be-

cause scatterings increase the conversion rates at smaller

x.

Altogether, we find that the impact of deviations from

kinetic equilibrium on the final relic abundance is rather

mild, below 10% level. This justifies to use integrated

Boltzmann equations for Yχ(x) and Y�b(x).

SOMMERFELD ENHANCEMENT

In the presence of light degrees of freedom non-

perturbative corrections to the annihilation rates are

known to become relevant in the non-relativistic limit [9,

10]. Between pairs of color charged particles the exchange

of gluons generates a potential which modifies the wave

function of the initial state particles and leads to a non-

negligible correction of the tree-level cross section [11–

14].

To leading order the effect of the QCD potential can

be described by a Coulomb-like potential [15]

V (r) ≈ αs

2r
[CQ − CR − CR� ] (21)

where CR and CR� denote the Casimir coefficients of the

incoming particles while CQ is the Casimir coefficient of

the final state. For a general Coulomb-potential with

V (r) = α/r the s-wave Sommerfeld correction factor S0

is given by [11]

S0 = − πα/β

1 − eπα/β
, (22)

where β = v/2 and the total annihilation cross section of

particles moving in this potential is given by σSomm =
S0 · σtree.

1
For final states which are exclusively in a

singlet, i.e. ZZ, W+W−, γγ, or an octet representation,

i.e. γg, Zg, the enhancement is given by Eq. (22) with

α = −4/3αs or α = 1/6αs, respectively. The gg final

state is slightly more complicated since it can be in a

singlet or octet representation. After summing over the

different contributions the total Sommerfeld correction

factor for this case reads [11]

S0 → 2

7
S0

�����
α=−4/3αs

+
5

7
S0

�����
α=1/6αs

. (23)

Since this channel dominates the annihilation rates by

orders of magnitude, we only take the correction for an-

nihilation to gluons into account.

REINTERPRETATION OF R-HADRON
SEARCHES

Due to their distinct signature LHC searches for highly

ionizing tracks can be performed in a rather inclu-

sive manner. They have been interpreted for lepton-

like heavy stable charged particles (HSCPs) and R-

hadrons [16–19]. Here we derive LHC constraints on the

model by reinterpreting the results of [16] for detector-

stable R-hadrons for finite decay lengths cτ . To this end

we compute the weighted fraction of R-hadrons that de-

cay after traversing the relevant parts of the detector in a

Monte Carlo simulation as follows. For a given R-hadron

in an event i this fraction is

F i
pass = e−�/(cτβγ) , (24)

where � = �(η) is the travel distance to pass the respec-

tive part of the detector which depends on the pseudo-

rapidity η while γ is the Lorentz factor according to the

velocity β. We use a simple cylindrical approximation

for the CMS tracker
2

with a radius and length of 1.1 m

1 In principle the Sommerfeld factors have to be determined sepa-
rately for each partial wave. For the model considered here the
total Sommerfeld effect can be approximated to good accuracy
by applying the s-wave correction to the full cross section.

2 We considered the tracker-only and tracker+muon-system anal-
ysis of [16] finding the higher sensitivity for the former one.
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model by reinterpreting the results of [22] for detector-
stable R-hadrons for finite decay lengths cτ . To this end
we compute the weighted fraction of R-hadrons that de-
cay after traversing the relevant parts of the detector in a
Monte Carlo simulation as follows. For a given R-hadron
in an event i this fraction is

F i
pass = e−�/(cτβγ) , (11)

where � = �(η) is the travel distance to pass the respec-
tive part of the detector which depends on the pseudo-
rapidity η while γ is the Lorentz factor according to the
velocity β. We use a simple cylindrical approximation
for the CMS tracker2 with a radius and length of 1.1 m
and 5.6 m, respectively. For the weighting we compute3

Fpass =

�
i F i

passPi
onPi

off�
i Pi

onPi
off

, (12)

where Pi
on and Pi

off are the probabilities of the respective
event to be triggered and pass the selection cuts, respec-
tively, and the sum runs over all generated events. We
use the tabulated probabilities Pi

on, Pi
off for lepton-like

HSCPs following the prescription in [47] (see also [48]
for details of the implementation of isolation criteria and
validation). We expect this to be a good approximation
as the selection criteria for lepton-like HSCPs and R-
hadrons are identical and differences in the overall detec-
tor efficiency cancel out in Eq. (12). We simulate events
with MadGraph5_aMC@NLO [49], performing show-
ering and hadronization with Pythia 6 [50].

We use the cross section predictions from NLL-

Fast [51] and rescale the signal by Fpass. The 95%
CL exclusion limits are then obtained from a compari-
son to the respective cross section limits from searches for
(top-squark) R-hadrons presented in [22]. The results are
shown in Fig. 6. We show limits for two models regard-
ing the hadronization and interaction of the R-hadron
with the detector material, the generic model [52, 53]
and Regge (charge-suppressed) model [54, 55] as the red
solid and blue dashed line, respectively.

In addition to the results for the 8 TeV LHC we show
results from an analogous reinterpretation of the prelimi-
nary results from 12.9 fb−1 of data from the 13 TeV LHC
run [23]. Since the tabulated probabilities in [47] are only
provided for 8 TeV we use these also for the analysis of the
13 TeV simulation assuming a similar detector efficiency
for R-hadrons in both runs.

The fraction of R-hadrons passing the tracker is ex-
ponentially suppressed for small life-times significantly

2 We considered the tracker-only and tracker+muon-system anal-
ysis of [22] finding the higher sensitivity for the former one.

3 For simplicity we display the formula for one R-hadron candi-
dates per event, for events with two candidates we follow the
prescription in [47] (with the replacement Pi

off → F i
passPi

off in
the respective sum in the numerator of Eq. (12)).

200 400 600 800 1000 1200
0.01

0.1

1

10

100

cτ
[m

]

m�q [GeV]

Reinterpretation CMS R-hadron search

—
—

—–Regge model

—
——

–
generic model

8
T
eV

13
T
eV

FIG. 6. Regions excluded at 95% CL by a reinterpretation

of the searches for detector stable top-squark R-hadrons with

CMS at the 8TeV and 13TeV LHC (tracker-only analysis).

weakening the respective sensitivity. However, there are
two competing factors that nevertheless result in mean-
ingful limits for cτ smaller than the detector size. On
the one hand, for small masses the production cross sec-
tion rises quickly. On the other hand, for smaller masses
a larger fraction of R-hadrons is significantly boosted
enhancing the travel distance in the detector. How-
ever, this (latter) effect does not significantly enhance
the sensitivity as the signal efficiency for largely boosted
R-hadrons decreases rapidly (as tracks become indistin-
guishable from minimal ionizing tracks for β → 1).

Note that the above CMS analysis has been interpreted
for R-hadrons formed from top-squarks. As discussed
in [55] the expected energy loss for an R-hadron con-
taining sbottoms is smaller. This results in an efficiency
around 30–40% smaller relative to the case of the stop
and therefore in slightly weaker limits on the sbottom
mass, see e.g. [24]. However, we use the above limit tak-
ing the result for the Regge model (that provides the
weaker limits) as a realistic estimate of the LHC limits
on sbottom-like R-hadrons considering the fact that the
uncertainties in the hadronization model are of similar
size as the difference between the sbottom and stop case.
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YχYb̃ − Y eq

χ Y eq

b̃

)

−
Γχ→b̃

s

(
Yχ − Yb̃

Y eq
χ

Y eq

b̃

)
+

Γb̃

s

(
Yb̃ − Yχ

Y eq

b̃

Y eq
χ

)

−
〈
σχχ→b̃b̃†v

〉(
Y 2
χ − Y 2

b̃

Y eq 2
χ

Y eq 2

b̃

)]


