Marc Schumann U Freiburg
LAUNCH 17
Heidelberg, September 15, 2017
marc.schumann@physik.uni-freiburg.de
www.app.uni-freiburg.de

Top panel: Evolution of the 222Rn activity concentration in the XENON100 detector during the purification of xenon from traces of the radioactive noble gas radon using a cryogenic distillation column. The seven different phases (roman numerals) show different operational modes of the detector. The gray dashed line shows the expected 222Rn concentration in the absence of the radon removal system. Bottom panel: Comparison of the 222Rn activity as determined by the purification method (upper line) and of 222Rn, 220Rn, and 218Po activities in the detector as measured by direct activation.
Dark Matter Searches: Status

spin-independent WIMP-nucleon interactions

![Graph showing cross-section vs. WIMP mass](image)
Dark Matter Searches: Status

- Spin-independent WIMP-nucleon interactions

\[m \geq 4.5 \text{ GeV/c}^2 \rightarrow \text{dominated by LXe TPCs} \]
Dark Matter Searches: The Future

spin-independent WIMP-nucleon interactions

some projects are missing...
Dark Matter Searches: The Future

spin-independent WIMP-nucleon interactions

some projects are missing...
Dark Matter Searches: The Limit

spin-independent WIMP-nucleon interactions

some projects are missing...
Interactions from coherent neutrino-nucleus scattering (CNNS) will dominate → ultimate background for direct detection

„neutrino floor“
PRD 89, 023524 (2014)
Dark Matter Searches: The Limit

COHERENT @ SNS

Observation of coherent elastic neutrino-nucleus scattering

A

Beam OFF

Beam ON

Number of photoelectrons (PE)

Res. counts / 2 PE

0

5

10

15

20

25

30

15

25

35

45

5

10

15

20

Res. counts / 2 PE

1

3

5

7

9

11

1

3

5

7

9

11

Fig. 3. Observation of Coherent Elastic Neutrino-Nucleus Scattering. Shown are residual differences (datapoints) between CsI[Na] signals in the 12 μs following POT triggers, and those in a 12-μs window before,

WIMP mass

1 2 3 4 5 6 8 10 20
spin-independent WIMP-nucleon interactions

Exposure
0.1 t\text{y}
2 t\text{y}
20 t\text{y}
200 t\text{y}

some projects are missing...
Detector? – Dual Phase Xenon TPC

TPC = Time Projection Chamber

Dark Matter WIMP
= single scatter nuclear recoil
S1 – Light

S2 – Charge
→ proportional scintillation

Background (β, γ)

Background (neutron)

• 3d position reconstruction
 → target fiducialization
• background rejection

M. Schumann (Freiburg) – DARWIN
Background Sources

- **Electronic Recoils** (gamma, beta) vs. **Nuclear Recoils** (neutron, WIMPs)

Only single scatters

- **Muon-induced neutrons**
 - pp+\(^7\)Be neutrinos → ER signature
 - High-E neutrinos → CNNS bg → NR signature

- Neutrons from (α,n) and sf:
 - Neutrons from (α,n) and sf
 - Xe-intrinsic bg: \(^{222}\)Rn, \(^{85}\)Kr, 2νββ
 - Neutrons from (α,n) and sf
 - Natural γ-bg
 - Neutrons from (α,n) and sf
 - Natural γ-bg

- **Electron Recoils** (gamma, beta)
- **Nuclear Recoils** (neutron, WIMPs)
 - Only single scatters
DARWIN Backgrounds

Remaining background sources:
- Neutrinos (→ ERs and NRs)
- Detector materials (→ γ, n)
- Xe-intrinsic isotopes (→ e⁻)

(assume 100% effective shield (~15m) against μ-induced background)

pp+⁷Be neutrinos → ER signature

γ-bg materials

Xe-intrinsic bg: \(^{222}\text{Rn}, ^{85}\text{Kr}, 2\nu\beta\beta\)

high-E neutrinos → CNNS bg → NR signature

neutrons from \((\alpha,n)\) and sf

Electronic Recoils (gamma, beta)

Nuclear Recoils (neutron, WIMPs)

only single scatters
Backgrounds

All relevant backgrounds are considered:

<table>
<thead>
<tr>
<th>Source</th>
<th>Rate [events/(t·y·keVₓₓ)]</th>
<th>Spectrum</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ-rays materials</td>
<td>0.054</td>
<td>flat</td>
<td>assumptions as discussed in text</td>
</tr>
<tr>
<td>neutrons*</td>
<td>3.8×10⁻⁵</td>
<td>exp. decrease</td>
<td>average of [5.0-20.5] keVnr interval</td>
</tr>
<tr>
<td>intrinsic ⁸⁵Kr</td>
<td>1.44</td>
<td>flat</td>
<td>assume 0.1 ppt of nat Kr</td>
</tr>
<tr>
<td>intrinsic ²²²Rn</td>
<td>0.35</td>
<td>flat</td>
<td>assume 0.1 μBq/kg of ²²²Rn</td>
</tr>
<tr>
<td>²νββ of ¹³⁶Xe</td>
<td>0.73</td>
<td>linear rise</td>
<td>average of [2-10] keVee interval</td>
</tr>
<tr>
<td>pp- and 'Be ν</td>
<td>3.25</td>
<td>flat</td>
<td>details see [19]</td>
</tr>
<tr>
<td>CNNS*</td>
<td>0.0022</td>
<td>real</td>
<td>average of [4.0-20.5] keVnr interval</td>
</tr>
</tbody>
</table>

MC simulation of detector made of main components (PTFE, CU, PMTs): subdominant after ~15 cm fiducial cut

³⁵Kr: 2x below XENON1T design
(0.03 ppt achieved: EPJ C 74 (2014) 2746)
²²²Rn: 100x below XENON1T design
¹³⁶Xe: assume natural xenon

consider all relevant neutrinos

At rejection levels ≥99.95%, NRs from CNNS dominate

Exposure: 200 t x y

Low-E solar neutrinos dominate ER backgrounds...
...if ²²²Rn sufficiently low
DARWIN WIMP Sensitivity

- exposure: $200 \, t \times y$; all backgrounds included
- likelihood analysis
- 99.98% ER rejection @ 30% NR acceptance, S1+S2 combined energy scale, $L_Y=8 \, \text{PE/keV}$, $5-35 \, \text{keV}_{nr}$ energy window

200 $t \times y$: $\sigma < 2.5 \times 10^{-49} \, \text{cm}^2$ @ 40 GeV/c2

excellent complementarity to LHC searches

SUSY Dark Matter

SUSY under pressure because not found at LHC?
→ true for some very constraint models (CMSSM etc.) but looks different when more parameters are left unconstrained

Example: pMSSM10 ← 10 SUSY parameters, e.g. EPJ C75, 422 (2015)

WIMP out of reach of HL-LHC (best-fit regions not covered), but accessible by DARWIN
WIMP Detection

- ER-like (background)
- NR-like (signal)

Discriminator $\propto \log_{10}(S2/S1)$

Energy [keVnr]

DARWIN with 30t LXe fiducial target

reconstructed energy, based on S1 and S2 signal
WIMP Detection

60 days

Discriminator $\propto \log_{10} (S2/S1)$ vs. Energy [keVnr]

5×10^y
WIMP Detection

![Graph showing energy vs. discriminator with 30 t x y and 1 year](image)

M. Schumann (Freiburg) – DARWIN
WIMP Detection

![Graph showing the distribution of WIMP detection results over energy.]
WIMP Detection

Discriminator \[\alpha \log_{10} (S2/S1)\] vs Energy [keVnr]

90 t \times y

3 years
WIMP Detection

Energy [keVnr]

Discriminator [$\sim \log_{10}(S2/S1)$]

150 t × y

5 years
WIMP Detection

exposure goal

200 t × y

6.7 years
WIMP Detection

- CNNS+neutrons
- WIMP: 30 GeV/c², $\sigma = 2 \times 10^{-48}$ cm²
- 40 signal events in box

solar neutrinos, 85Kr, 222Rn, $2\nu\beta\beta$, materials
WIMP Spectroscopy

Reconstruction: 2×10^{-47} cm2

Target Complementarity

JCAP 11, 017 (2016)

Capability to reconstruct WIMP parameters
- $m_\chi = 20, 100, 500$ GeV/c2
- $1\sigma/2\sigma$ CI, marginalized over astrophysical parameters
- due to flat WIMP spectra, no target can reconstruct masses >500 GeV/c2

PRD 83, 083505 (2011)

Reconstruction improves considerably by adding Ge-data to Xe.
Only minimal improvement for Ar.
DARWIN The ultimate WIMP Detector

- **Goal:** aim at sensitivity of a few 10^{-49} cm2, limited by irreducible ν-backgrounds.
- **Collaboration:** international consortium, 24 groups → R&D ongoing.

Baseline scenario
- ~50t total LXe mass
- ~40 t LXe TPC
- ~30 t fiducial mass

Timescale: start after XENONnT

[Link: www.darwin-observatory.org](http://www.darwin-observatory.org)
DARWIN Collaboration

2016 Zürich

2017 Freiburg

(c) HOW Photos
Challenges

- **Size**
 - electron drift (HV)
 - diameter (TPC electrodes)
 - mass (LXe purification)
 - dimensions (radioactivity)
 - detector response (calibration, corrections)

- **Backgrounds**
 - ^{222}Rn: factor 100 required
 - (α,n) neutrons (from PTFE)

- **Photosensors**
 - high light yield (QE)
 - low radioactivity
 - long-term stability

- etc etc
 - R&D within XENON collaboration
 - **new: two ERC projects**
 - ULTIMATE (Freiburg)
 - Xenoscope (Zürich)
DARWIN The **ultimate** WIMP Detector

What (else) can we do with these instruments? other than WIMPs
Interactions in LXe Detectors

from XENON100
Interactions in LXe Detectors

- Coherent scattering off xenon nucleus → nuclear recoil
 - Dark Matter
 - CNNS

SM process, not yet measured.
Deviation from expectation → new physics?
Interactions in LXe Detectors

scattering off atomic electrons, excitations etc. → electronic recoil

- rare processes detectable if ER background is low

cohesent scattering off xenon nucleus → nuclear recoil

- Dark Matter
- CNNS

Many science channels are accessible with a multi-ton DARWIN detector thanks to its extremely low ER background.
Axions and ALPs couple to xenon via **axio-electric-effect**

\[\sigma_{AE}(E_A) = \sigma_{pe}(E_A) \frac{g_{AE}^2}{\beta_A} \frac{3E_A^2}{16\pi \alpha m_e^2} \left(1 - \frac{\beta_A}{3}\right) \]

→ axion ionizes a Xe atom

Axion

arises naturally in the Peccei-Quinn solution of the strong CP-problem

→ well-motivated dark matter candidate

Axion-like particle (ALP)

generalization of the axion concept, but without addressing strong CP problem

(ALPs = Nambu-Goldstone bosons from breaking of some global symmetry)
Axions and ALPs couple to xenon via **axio-electric-effect**

\[
\sigma_{Ae}(E_A) = \sigma_{pe}(E_A) \frac{g_{Ae}^2}{\beta_A} \frac{3E_A^2}{16\pi\alpha m_e^2} \left(1 - \frac{\beta_A}{3}\right)
\]

→ axion ionizes a Xe atom

Axions

arises naturally in the Peccei-Quinn solution of the strong CP-problem

→ well-motivated dark matter candidate

Axion-like particle (ALP)

generalization of the axion concept, but without addressing strong CP problem

(ALPs = Nambu-Goldstone bosons from breaking of some global symmetry)
pp-Neutrinos in DARWIN

- Neutrinos interact with Xe electrons
 → electronic recoil signature
- Continuous recoil spectrum
 → largest rate at low E
pp-Neutrinos in DARWIN

A background for the WIMP search

Differential Recoil Spectrum in Xe

- Neutrinos interact with Xe electrons → electronic recoil signature
- Continuous recoil spectrum → largest rate at low E

Neutrino interactions

- ER rejection efficiencies ~99.98% at 30% NR efficiency are required to reduce to sub-dominant level

M. Schumann (Freiburg) – DARWIN

JCAP 11, 017 (2016)
pp-Neutrinos in DARWIN

a new physics channel!

- neutrinos interact with Xe electrons → electronic recoil signature
- continuous recoil spectrum → largest rate at low E
 ~0.26 ν evts/t/d in low-E region (2-30 keV)

- 30t target mass, 2-30 keV window → 2850 neutrinos per year (89% pp)
 → achieve 1% statistical precision on pp-flux (→ P_{ee}) with 100 t x y
0ν Double-beta Decay

![Diagram](image.png)

- Current limit
- Inverted Hierarchy
- Normal Hierarchy
- DARWIN
- DARWIN (ultimate)
Supernova Neutrinos

- \(\nu \) from supernovae could be detected via CNNS as well
- signal from accretion phase of a \(\sim 18 \, M_{\odot} \) supernova @ 10 kpc is clearly visible in DARWIN
- signal: NRs plus precise time information → information on total energy loss in neutrinos → complementary to larger detectors

Chakraborty et al., PRD 89, 013011 (2014)
Lang et al., PRD 94, 103009 (2016)
DARWIN – exciting prospects

Science with a 40 t LXe TPC

Nuclear Recoil Interactions

- **WIMP dark matter**
 - spin-independent **mid/high** mass
 - spin-dependent
 - complementary with LHC, indirect search
 - various inelastic models (χ, n, MiDM, ...)

- **Coherent neutrino-nucleon scattering (CNNS)**
 - ^8B neutrinos (low E), atmospheric (high E)
 - supernova neutrinos

Electronic Recoil Interactions

- **Non-WIMP dark matter and neutrino physics**
 - axions, ALPs
 - sterile neutrinos
 - pp, ^7Be: precision flux measurements <1%

- **Rare nuclear events**
 - $0\nu\beta\beta$ (^{136}Xe), 2vEC (^{134}Xe), ...