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axions?
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the big picture

• confirmed again and again by all experiments:

• makes incredibly 
precise predictions 
about:
• properties of particles 

• interactions between 
particles 

➡production cross 
sections 

➡decay rates of particles
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cosmic microwave background

anisotropy distribution constrains 
cosmological models:
• expansion of the universe
• dark matter 
• structure formation

Planck space 
observatory
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indications for dark matter
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dark matter candidates

other:
• modified Newtonian dynamics (MOND)
• massive compact halo objects (MACHO)

WIMPs
• weakly interacting 
massive particles

• predicted by 
supersymmetry

• very large 
experimental efforts

Axions
• ultra-light particles
• predicted by 
Peccei-Quinn 
theory

• large experimental 
efforts

subjective 
plausibility: 5%

subjective 
plausibility: 50%

subjective 
plausibility: 45%
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direct search for WIMPs
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search for WIMPs
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dark matter candidates

other:
• modified Newtonian dynamics (MOND)
• massive compact halo objects (MACHO)

WIMPs
• weakly interacting 
massive particles

• predicted by 
supersymmetry

• very large 
experimental efforts

Axions
• ultra-light particles
• predicted by 
Peccei-Quinn 
theory

• large experimental 
efforts

subjective 
plausibility: 5%

subjective 
plausibility: 25%

subjective 
plausibility: 70%
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P violation

• maximum parity (P) 
violation in weak 
interaction 

• well established in 
theory 

• CP is the true 
symmetry
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CP violation

• decay rates differ at percent level
• CP symmetry is violated
• well established in EWK theory
• CPT is the true symmetry
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strong CP problem

• CP violation
• not established in strong interaction

• possible solution:
•θ is a new scalar field
• minimum of QCD potential occurs at θ == 0

• CP violating term
•θ is arbitrary angle

• why is θ == 0 ?

• gluon field

L✓ = ✓
g2s

32⇡2
G̃aµ⌫Ga

µ⌫
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the axion in the early universe

𝑎 

𝑉(𝑎) 
• new U(1)PQ symmetry 

breaks at high scale fa

𝑎 

𝑉(𝑎) 

Θ = 0 

• potential changes 
shape when universe 
cools down (T~1GeV) 

• axion acquires mass 
• field starts oscillating 
• expected density 

compatible with DM

axions born from vacuum realignment

pictures from G. Raffelt 
(MADMAX workshop 2016)
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axion couplings predicted

• Axion-photon coupling
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ɣ

gaɣɣ
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transparency of the universe
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transparency of the universe
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stellar cooling

• excessive cooling in different 
types of stellar objects:

• white dwarfs, red giants, … 

• single observation not 
statistically significant

• combination is significant 

• straight forward explanation 
with axions

• hypothetical axion emission

a

ɣ

ɣ

𝛎

ɣ
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axions solve many problems simultaneously

and it’s not a new concept! Higgs!

• strong CP problem • dark matter

L✓ = ✓
g2s

32⇡2
G̃aµ⌫Ga

µ⌫

• transparency

a
ɣ

ɣ

𝛎

ɣ

• stellar cooling
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where to search for axions
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where to search for axions
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where to search for axions
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where to search for axions
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“SMASH” DM model axion mass
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where to search for axions

“SMASH” DM model
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how to search for axions

• helioscope • search for axions 
emitted by the sun

• haloscope • find axions in the 
galactic DM halo

• laboratory
• produce axions 
with a laser and 
a B-field
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helioscope: “CAST”

• in operation 
since 2003
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laboratory: “ALPS”
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haloscope: “ADMX”

• the galactic DM halo is …here! 
• axions in a B field emit photons

• too weak to detect directly

• enhanced with resonator
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“SMASH” DM model
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current constraints
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plot with support 
from J. Redondo



OSQAR, CERN

IAXO, (?)

ARIADNE, Reno

ADMX, Wash. U

ABRACADABRA, Yale

ADMX,-HF Yale
CASPER, Mainz

ALPS-II, DESY

CAST, CERN

MADMAX, (?)

QUAX
QUAXgsgp

CAPP

ORGAN, UWA,Perth

BMV, Toulouse
PVLAS, Legnaro

ADMX+, Fermilab

future experiments map from J. 
Redondo
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future experiments

• IAXO: next generation 
helioscope
• larger, stronger magnet 

• when and how not yet clear
Transverse B-field (peak 5T, average 2.5T)

• more than one order of 
magnitude improvement 
over CAST

CERN-SPSC-2013-022
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future experiments

• ALPS-II: next generation light-
shining-through-the-wall
• more magnets, better laser,  

better detector
• resonator in regeneration volume 

• clear schedule at DESY
• several stages: ALPS II a-c
• factor 3000 improvement

arXiv:1302.5647
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future experiments
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dielectric haloscope
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axion DM modifies 
maxwell equations:

• EM radiation emitted at 
dielectric transition region 

• power emission by one layer: 

• too small to detect?
• stronger field? larger area? 
➡resonator

P

A
= 2.2⇥ 10�27 W

m2

✓
Be

10T

◆2

C2
a�fDM

arXiv:1612.07057
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Mirror Dielectric  Disks Receiver 

Be 

• resonator: multiple layers 

dielectric haloscope arXiv:1612.07057
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MADMAX experiment

• MADMAX: magnetized 
dish and mirror axion 
experiment: 
• dark matter axion search in 

region 50 - 400 μeV 

• multiple dielectric layers in 
strong B field 

• overcome limitations from 
microwave cavities



39

O
. R

ei
m

an
n 

/ M
PP

 
test setup in Munich



40

MADMAX prototype plan

mirror

microwave 
receiver

magnet
booster (movable 
dielectric layers)

carriage

vacuum, 
cryo enclosure
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MADMAX experiment

operating principle
• equidistant layers: 

• large boost, good S/N
• narrow frequency range
• frequent disk -repositioning required

• slight misalignment of layers: 
• smaller boost,  worse S/N
• broad frequency range
• less repositioning

→trade-off for optimal 
sensitivity
• all disks need individual 

high-precision adjustment

arXiv:1612.07057



• challenges:
• huge and strong magnet (never built before)
• large, thin dielectric media to be moved around 

with high precision (in vacuum, strong field) 
• tiny signal, unknown frequency 
• is DM here or out there? 
• coherence:

42

MADMAX experiment
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MADMAX experiment
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UHH & DESY have signed the MADMAX white paper: 

madmax website: 
https://www.mpp.mpg.de/forschung/astroteilchenphysik-und-kosmologie/madmax-suche-nach-axionen-als-dunkler-materie/

MADMAX white paper
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Problem:      find the ideal dielectric material to obtain 
high boost factors 
over a large surface   

ideal dielectric has:
High dielectric constant (ε > 10) for large axion/photon conversion factor

Low loss (tan δ < 10-5) in order to reduce photon loss 

real dielectric = ideal capacitor + equivalent series resistance (ESR) 

ESR should be minimum, i.e. tan δ should be small

dielectric material
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1 m2 dielectric crystals cannot be grown (today)
Solution: tiling 

how to cut dielectric crystals ? (bridle)
how to glue ?
how to test dielectric properties after glueing ? 

test of dielectric disk tiling
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sliding rods to support & adjust position
3-points fixation / disc, 80 discs
variable discs distance 1-20 mm 
rod movement ~ 1.6 m 

ideas for disk positioning system
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• Test the scaling of the test system at MPP Munich to a full 80 discs 
booster system

• Test the mechanical alignment system 

• Investigate behaviour of different dielectric material in a cryogenic 
environment
• (and with high magnetic field)

• Check the agreement of simulations & measurements, including 
boost factor, transmissivity and reflectivity

• Study the required precision and stability of the mechanical 
alignment system and flatness of disc surface 

• First test with a 4 T magnet 

• First physics run with reduced sensitivity to obtain exclusion limits 
on Axion models

goals of prototype in HH
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summary

“There are viable theories and there are natural and 
elegant theories. 
However, all viable, natural and elegant theories 
contain dark-matter axions”   —  Ann Nelson

• three types of experiments searching for axions:
• helioscopes
• haloscopes
• light-shining-through-wall 

• all experiments will experience dramatic 
improvements in the coming years

• better magnets, better detectors, better ideas 

• the region where axions solve both QCD and DM 
problems will soon be covered by MADMAX
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more



51

backup


