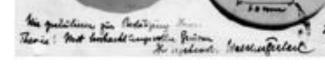
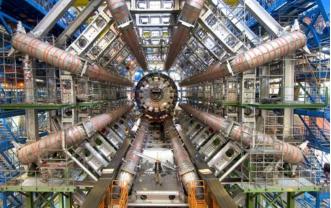
Will there ever be a Standard Model of the Brain ?

Karlheinz Meier, Ruprecht-Karls-Universität Heidelberg Colloquium DESY & Zeuthen May 2017







NATURE

Emergence of structure from fundamental constituents and their interactions 100.000.000.000 Synapses

Many : Structure / Variation Microscopic simplification required

100.000.000.000.000.000.000 Stars

Few : Precision / Uniqueness

The Universe

3 x 10²³ Stars

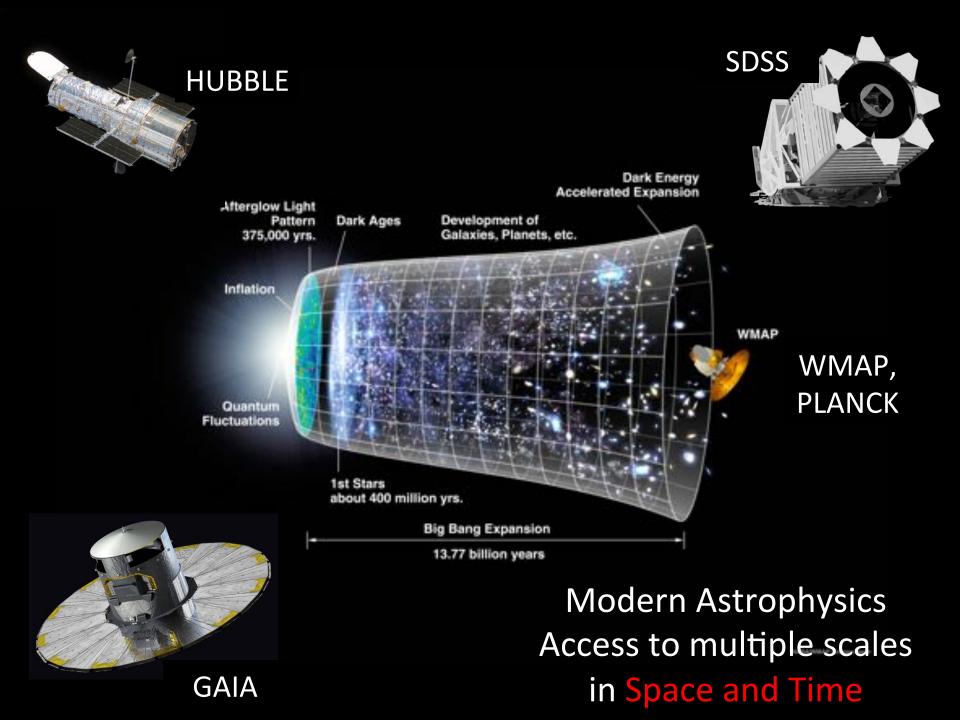
10¹¹ Galaxies

One known copy

Timescales from the Planck time to 10 billion years Closed system driven by internal physical laws

Major nonunderstood contributions to the dynamics

Dynamics is a crucial ingredient



z = 48.4

T = 0.05 Gyr

500 kpc

© Volker Springel, HITS, Heidelberg

The Brain

10¹⁵ connections (synapses)

10¹¹ nodes (neurons)

Many billion copies worldwide

Timescales from milliseconds to years

Stochastic on the microscopic level

Open system driven by external I/O for Information processing

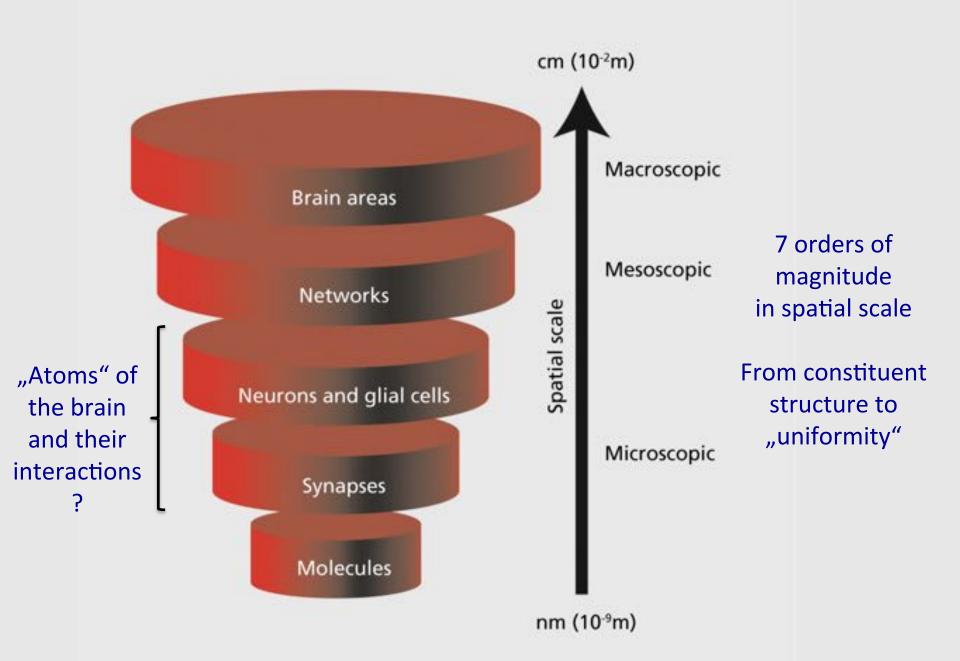
> Major nonunderstood contributions to the dynamics

Dynamic long-range and short-range interactions

What can we hope for ?

- Identify relevant simplified constituents
- Describe structure at all relevant spatial scales
- Understand dynamics at all relevant time scales
- Understand memory - Understand spatio-temporal pattern detection
- Understand prediction making
 Understand who you are

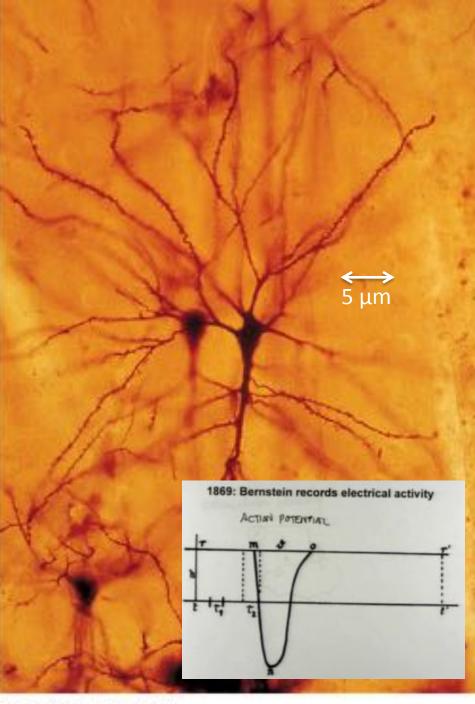
THE BRAIN IS AN ACTIVE INFORMATION PROCESSING SYSTEM !



Herrmann v. Helmholtz (1821-1894) Julius Bernstein (1839-1917) Santiago Ramón y Cajal (1852-1934)

Individual cells in the brain are spatially separated constituents

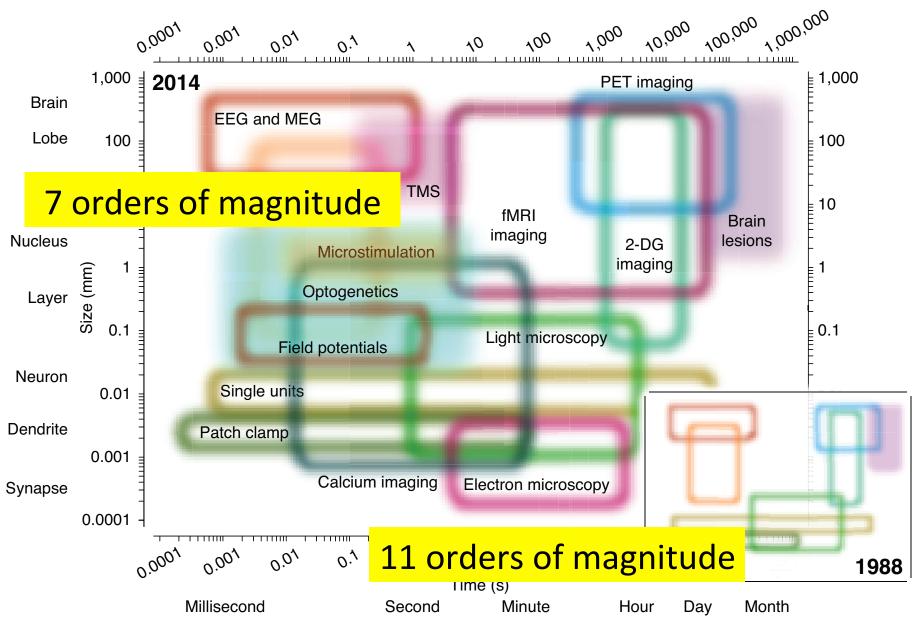
"interaction over a distance" and "spatial and temporal integration"



^{@ 2007} Thomson Higher Education

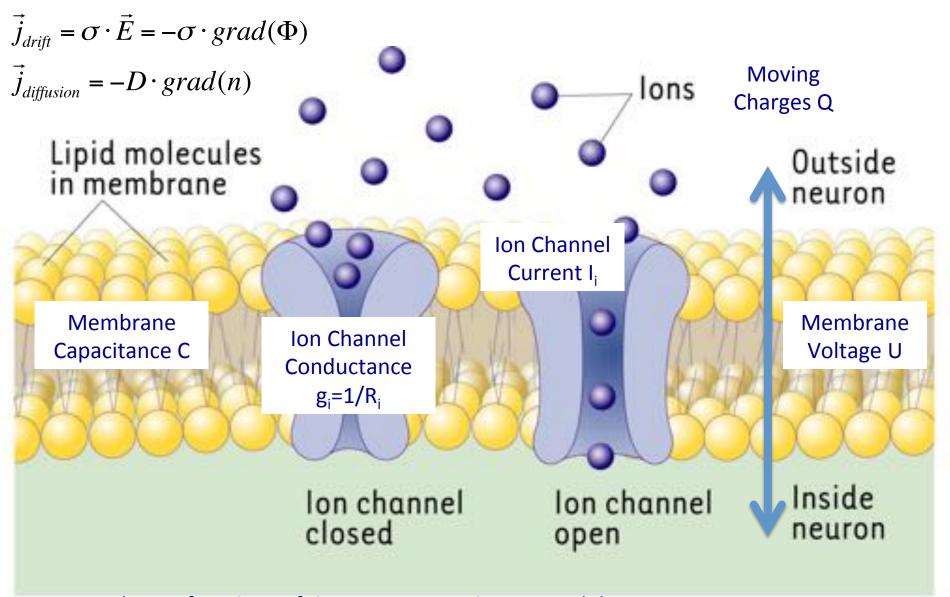
K. Amunts et al., Science (2013), FZ Jülich

Modern Neuroscience : Access to multiple Scales in Space and Time

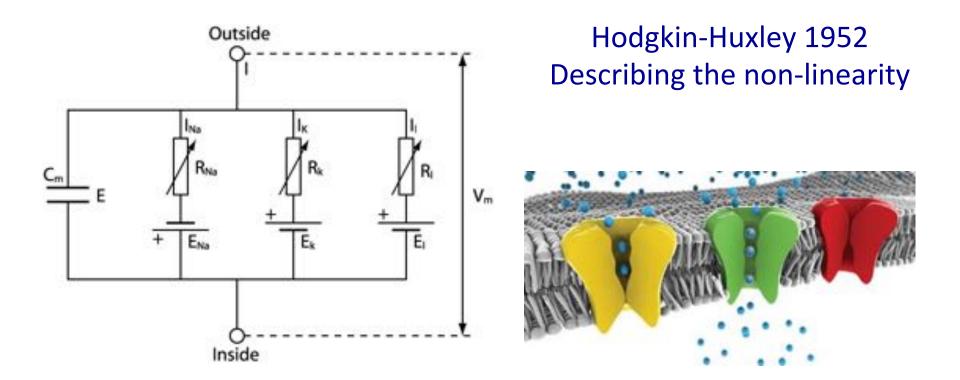


Sejnowski et al, Nature Neuroscience, 2014

Some Electrical Quantities of a real Neuron Membrane



U, I and g are functions of time in an operating network ! Current theories and modelling are treating these quantities only (few exceptions)

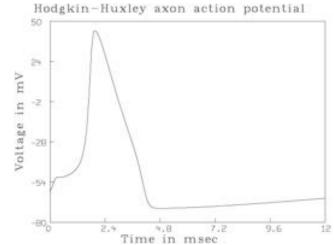


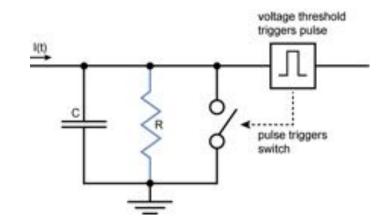
$$I = C_m \frac{\mathrm{d}V_m}{\mathrm{d}t} + \bar{g}_{\mathrm{K}} n^4 (V_m - V_K) + \bar{g}_{\mathrm{Na}} m^3 h (V_m - V_{Na}) + \bar{g}_l (V_m - V_l),$$

$$\frac{dn}{dt} = \alpha_n(V_m)(1-n) - \beta_n(V_m)n$$

$$\frac{dm}{dt} = \alpha_m(V_m)(1-m) - \beta_m(V_m)m$$

$$\frac{dh}{dt} = \alpha_h(V_m)(1-h) - \beta_h(V_m)h$$

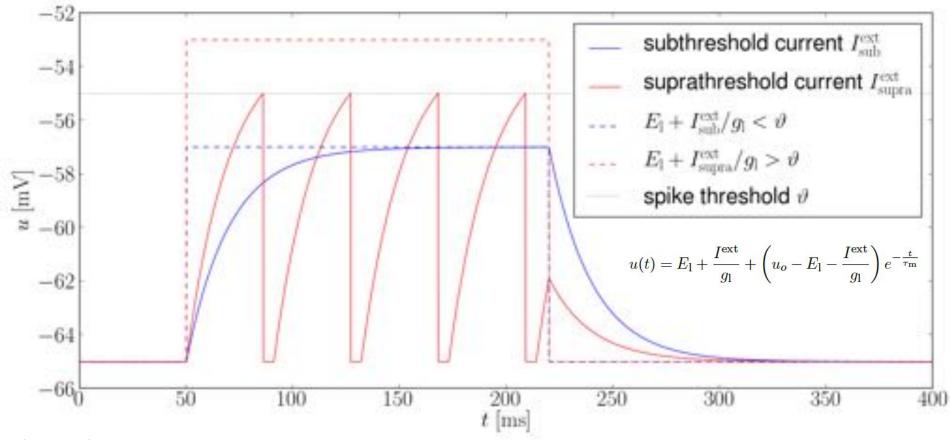




Leaky-integrate-and-fire (LIF)

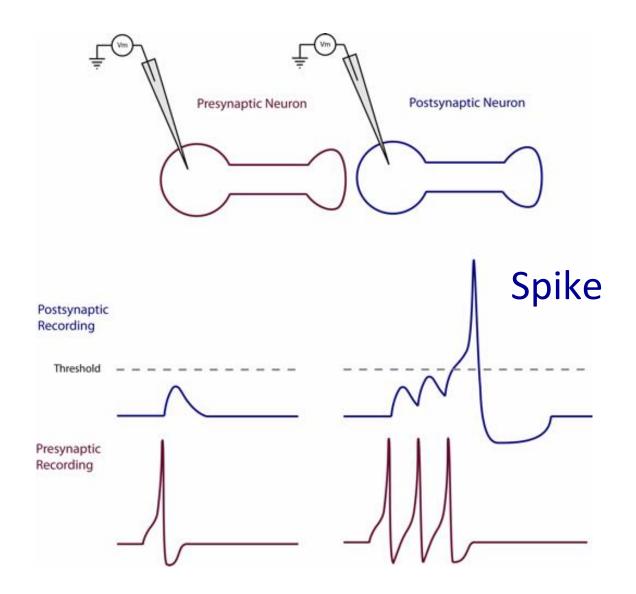
$$C_{\rm m}\frac{du}{dt} = g_{\rm l}(E_{\rm l} - u) + I^{\rm syn} + I^{\rm ext}$$

$$u(t_{\rm spike} < t \le t_{\rm spike} + \tau_{\rm ref}) = \varrho$$

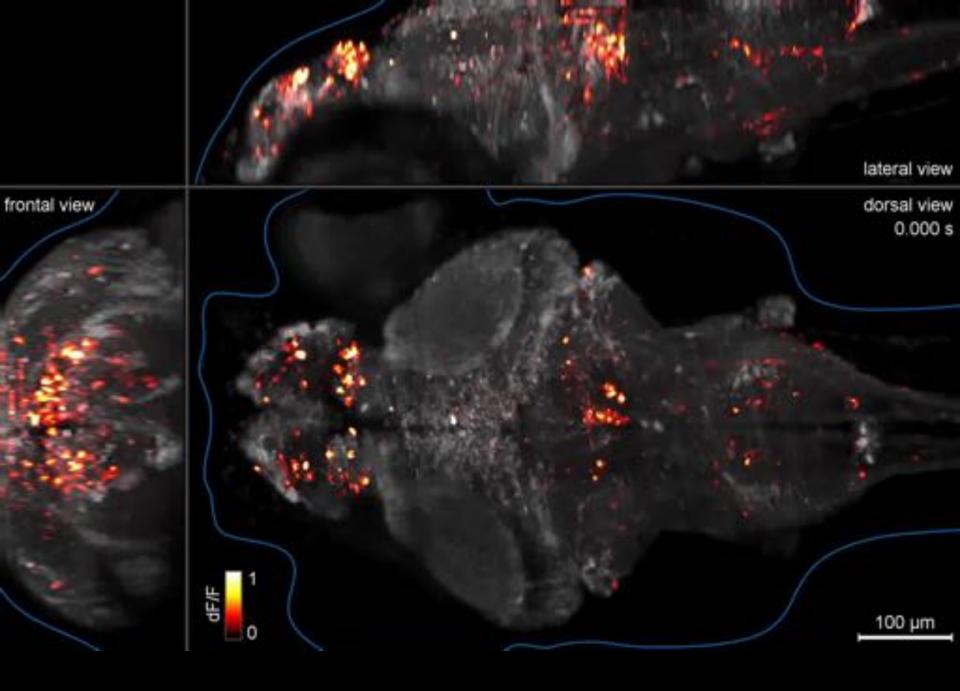


PhD, Mihai Petrovici, 2015

Time and temporal integration



https://upload.wikimedia.org/wikipedia/commons/0/0a/Temporal_summation.JPG



Ahrens et al, Nature Methods 10, 413-420 (2013)

What is time (spiking ...) good for ?

Postsynaptic Neuron

Presynaptic Neuron

Sparse information coding by time correlations Short term spike based synaptic plasticity (STP) Spike-timing-dependent plasticity (STDP) Temporal noise (stochasticity) based computing Recording Energy efficiency **Computational advantages** Brain-inspired or brain-derived or neuromorphic computing

https://upload.wikimedia.org/wikipedia/commons/0/0a/Temporal_summation.JPG

FAST dynamics : "Spike-Time-Dependent-Plasticity (STDP)"

In vivo intracellular recording (Adult Visual Cortex)

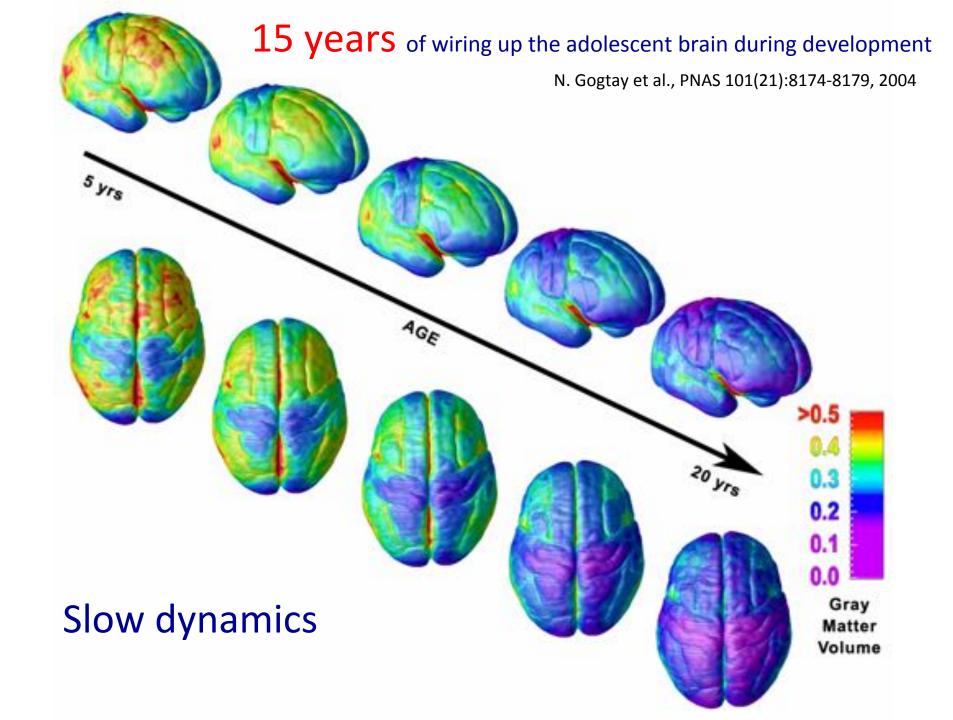
(Bi and Poo, Ann. Rev. Neurosci., 2001) $\Delta t < 0$ $\Lambda t > 0$ 100 Change in EPSC amplitude (%) 80 60 40 20 0 0 0 -20 -40 -60 -80 B Spike timing (ms)

STDP as a Causality Detector

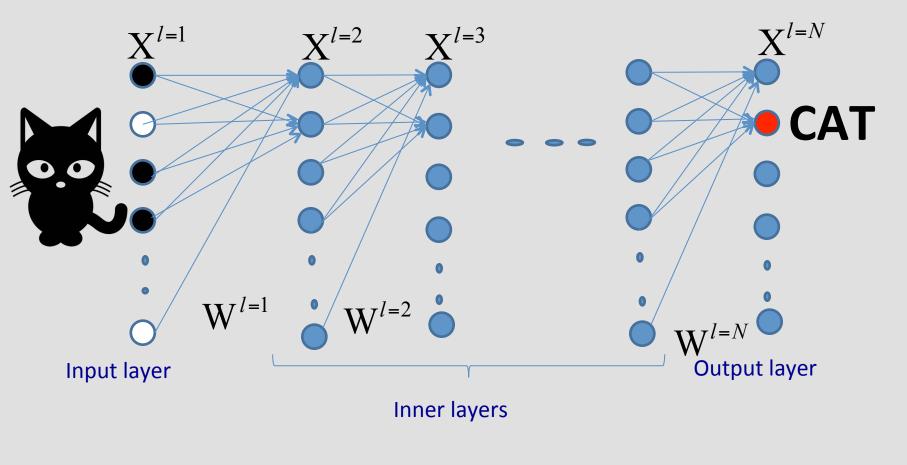
Extremly strong time dependence of facilitation or depression of synaptic strength

Neural circuits require asynchronous MILLISECOND timing for long term learning !

AFTER - BEFORE "synaptic spike"

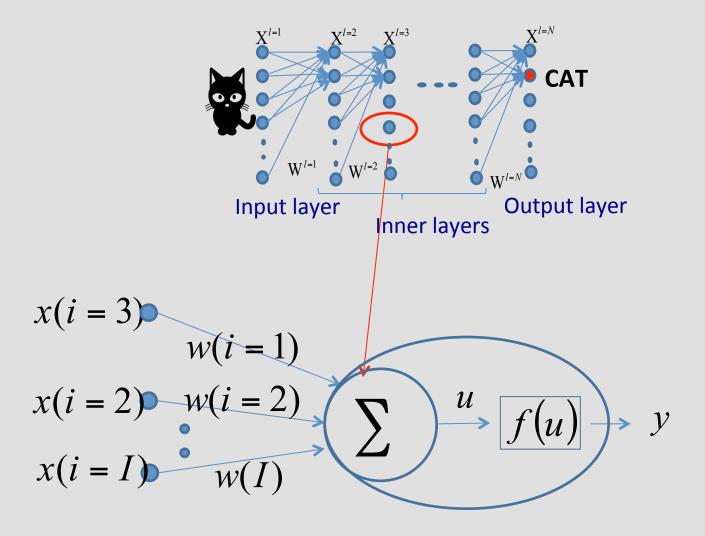


Artificial Neuronal Networks ignore time evolution

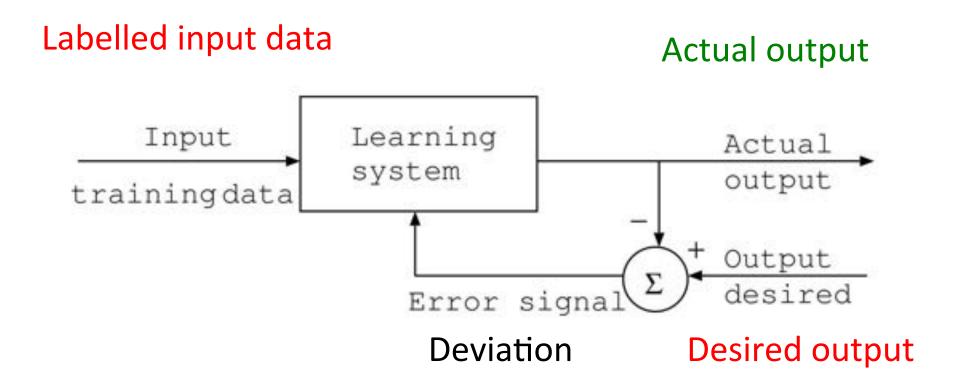


Here : local, no recurrency *feed-forward*

Pairs of neurons connected by weights Neuron performs integration (summing)



Learning Example : Supervised



Jumpstart Strategic Network Supervised Learning Predict human moves database of existing matches 160.000 matches, 30 Million positions

Policy Network

Reinforcement Learning Network self-matches 128.000.000 matches

Value Network

Combination of first 2 steps 30 Million self-matches

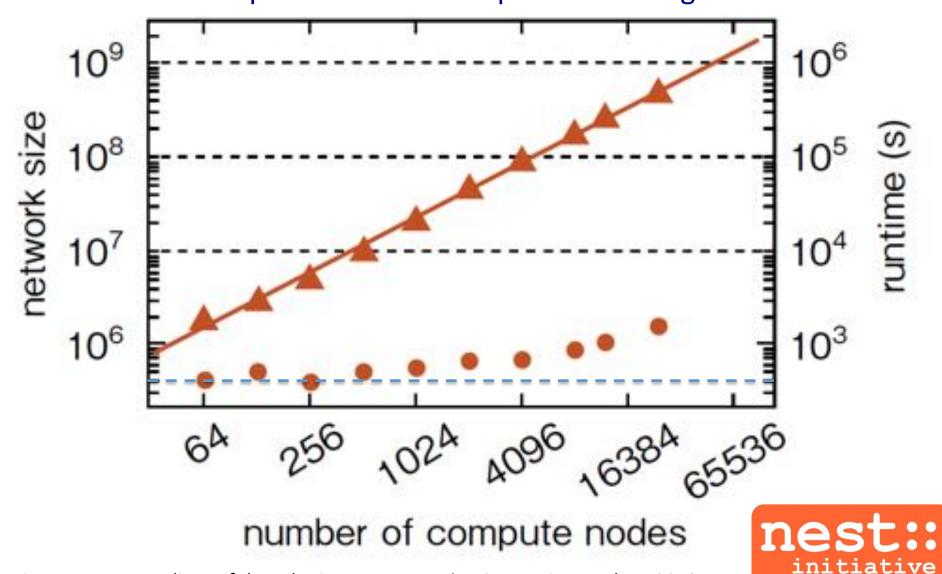
One year learning time, 0.5 MW Energy : 183 MWh <u>Excessive</u> training samples

Learning is slow and expensive Application is fast



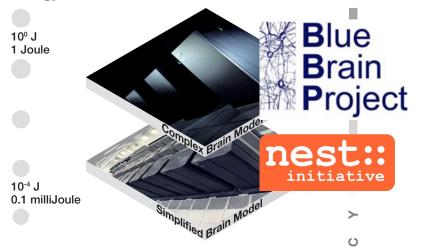
Markram, 2015

K-Computer, RIKEN Lab, **12.6 MW** Processor-to-Neural Cell Ratio 1 : 20.000 Simulation speed **1.520 : 1** compared to biological real-time



Diesmann, Proceedings of the 4th Biosupercomputing Symposium, Tokyo, 2012

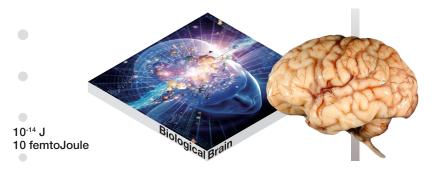
Energy Scales



Energy*Scales*

Computational Primitive : Energy used for a synaptic transmission

10 - 14 orders of magnitude difference for *"the same thing"*

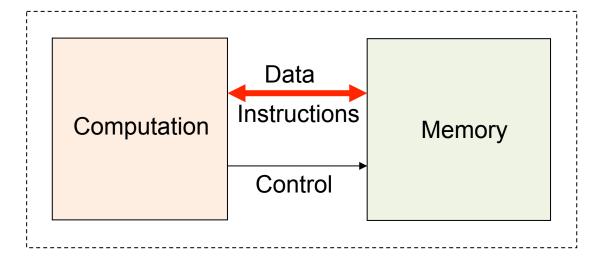


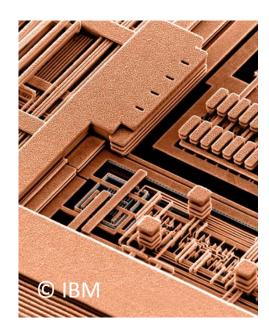
From : HBP project report

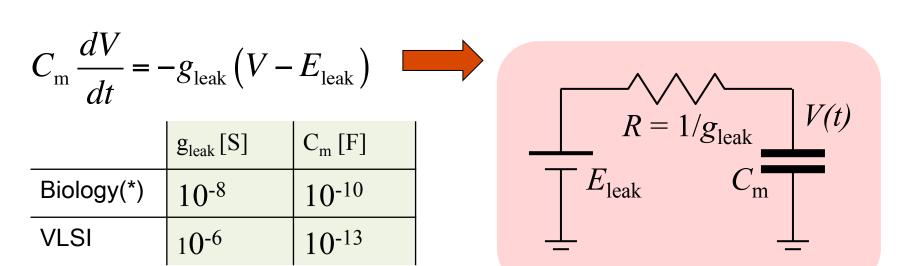
Time <i>Scales</i>	Nature + Real-time	Simulation	
Causality Detection	10 ⁻⁴ s	0.1 s	
Synaptic Plasticity	1 s	1000 s	
Learning	Day	1000 Days	
Development	Year	1000 Years	
12 Orders of Magnitude			
Evolution	> Millenia	> 1000 Millenia	
> 15 Orders of Magnitude			

von Neumann Architecture

- Data and instructions stored in memory
- Content of memory addressable by location
- Instructions executed sequentially unless order is explicitly modified
- Memory and Computation physically separated







(*) Brette/Gerstner, J. Neurophysiology, 2005

Physical Model System

(+ non-linearity)

Continuous Time Integrating Neural Cell Membrane

$$c_{\rm m} \frac{dV}{dt} = -g_{\rm leak} (V - E_{\rm l}) + \sum_{k} p_{k} g_{k} (V - E_{\rm x}) + \sum_{l} p_{l} g_{l} (V - E_{\rm i})$$

$$p_{k,l}(t) \qquad \text{exponential onset and decay (post-synaptic potential shape)}$$

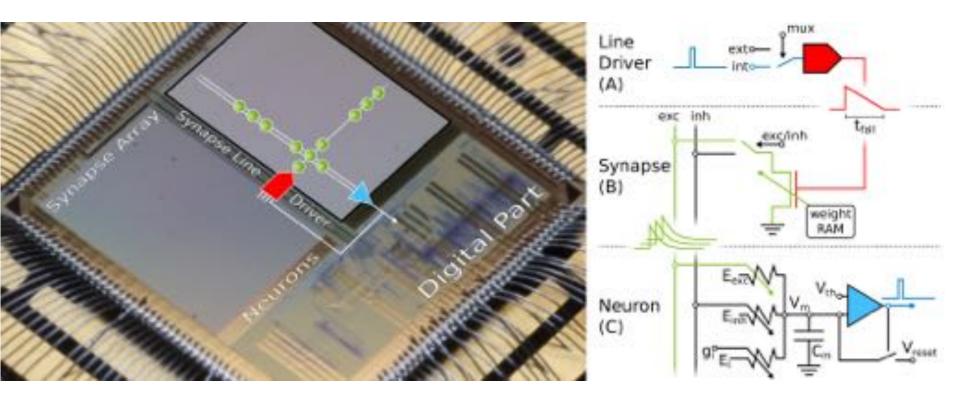
$$g_{k,l} \qquad 0 \text{ to } g_{\rm max} (\text{"weights"})$$

effective membrane time-constant $c_{\rm m}/g_{\rm total}$ is time-dependent

"Time" is imposed by internal physics, not by external control

Brainsca

ScaleS



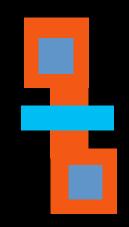
5 mm x 5 mm = 0.25 cm² 100.000 dynamic synapses 10⁶ s/cm² on synaptic field 4x10⁵ s/cm² on chip

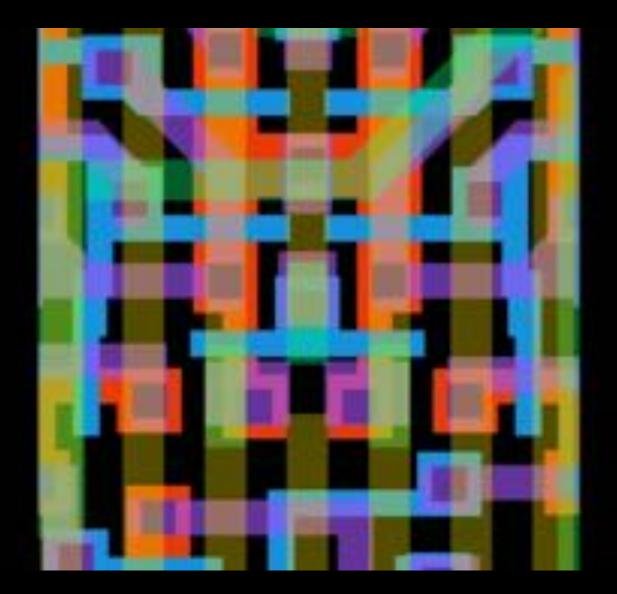
Neuron density is irrelevant when discussing VLSI neural systems

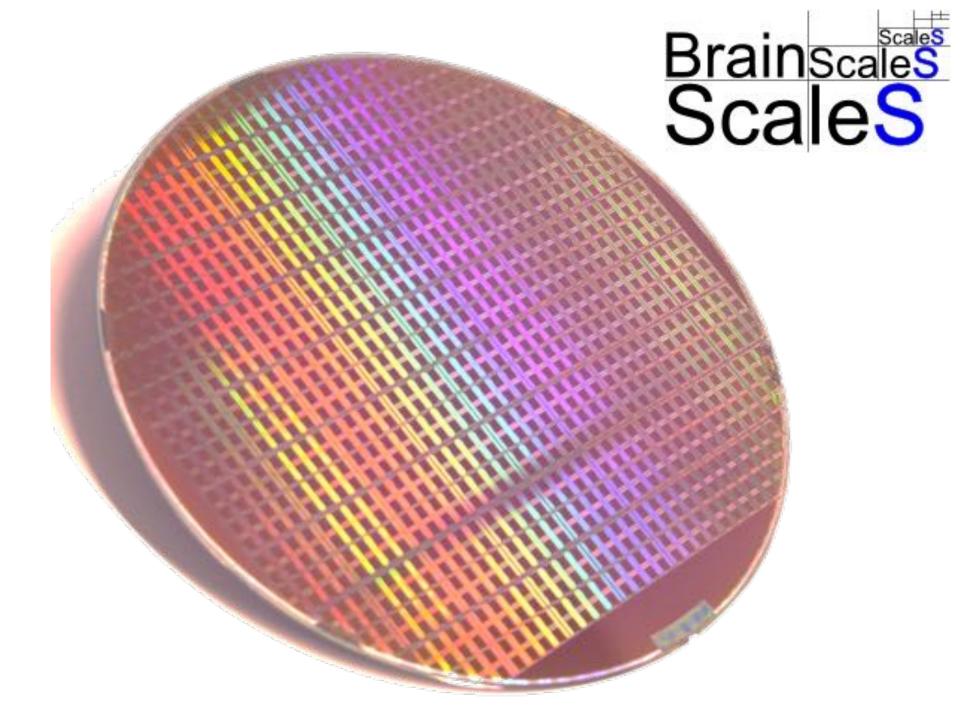
$$c_{\rm m} \frac{dV}{dt} = -g_{\rm leak} (V - E_{\rm l}) + \sum_{k} p_{k} g_{k} (V - E_{\rm x}) + \sum_{l} p_{l} g_{l} (V - E_{\rm i})$$

Mixed-signal : local analog computation, binary, continuous time communication – "brain-like"

Thomas Pfeil, Andreas Grübl, Sebastian Jeltsch, Eric Müller, Paul Müller, Mihai Petrovici, Michael Schmuker, Daniel Brüderle, Johannes Schemmel, and Karlheinz Meier. "Six networks on a universal neuromorphic computing substrate", Front Neurosci. 2013; 7: 11.







Physical Model, local analogue computing, binary continuous time communication

Wafer-Scale Integration of 200.000 neurons and 50.000.000 synapses on a single 20 cm wafer

Short term and long term plasticity, 10.000 faster than real-time

Conventional Computer Data or simulated environment Learning mechanisms

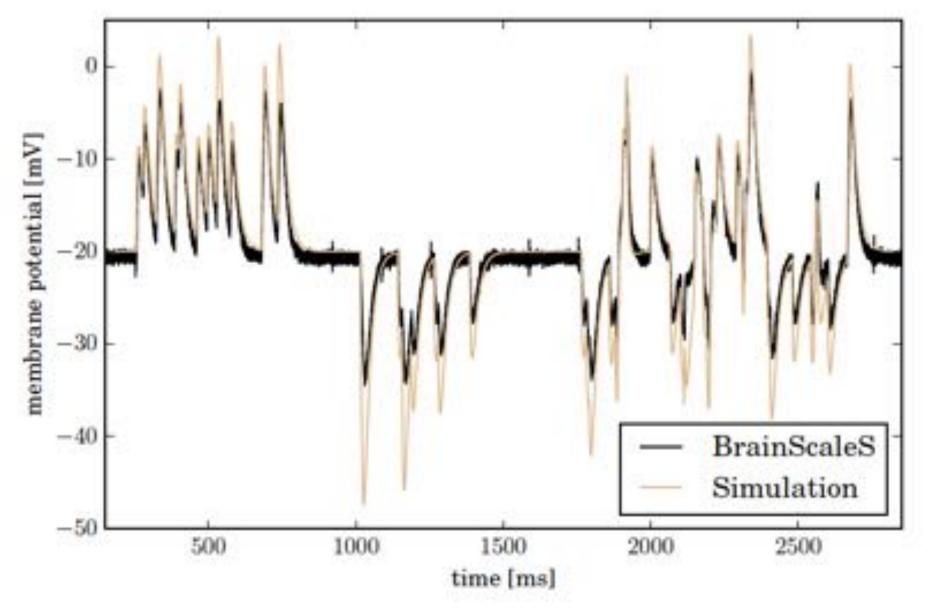
Reward (penalty)

State of data or environment

Neuromorphic Machine

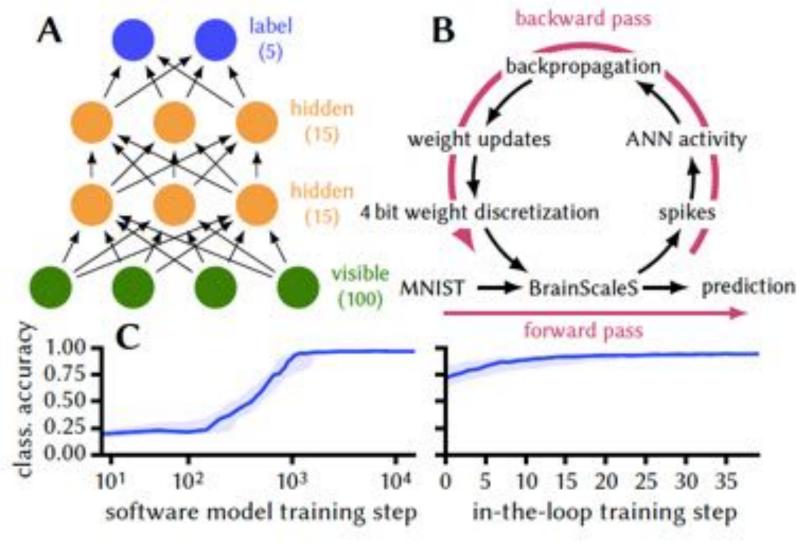
Action of machine on data or environment

Physical model emulation



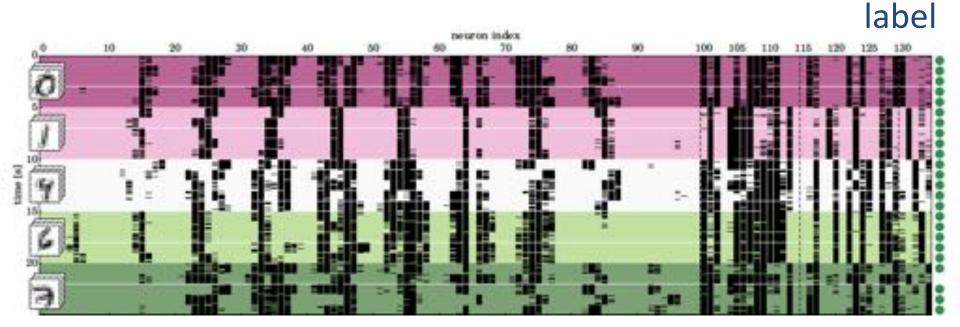
Sebastian Schmitt et al., accepted IJCNN 2017

Feed-forward, rate-based. 4-layer spiking network MNIST classification on a physical model machine performance before and after hardware in-the-loop learning



https://arxiv.org/abs/1703.01909

MNIST classification on a physical model machine Neuronal firing activity after hardware in-the-loop learning



input

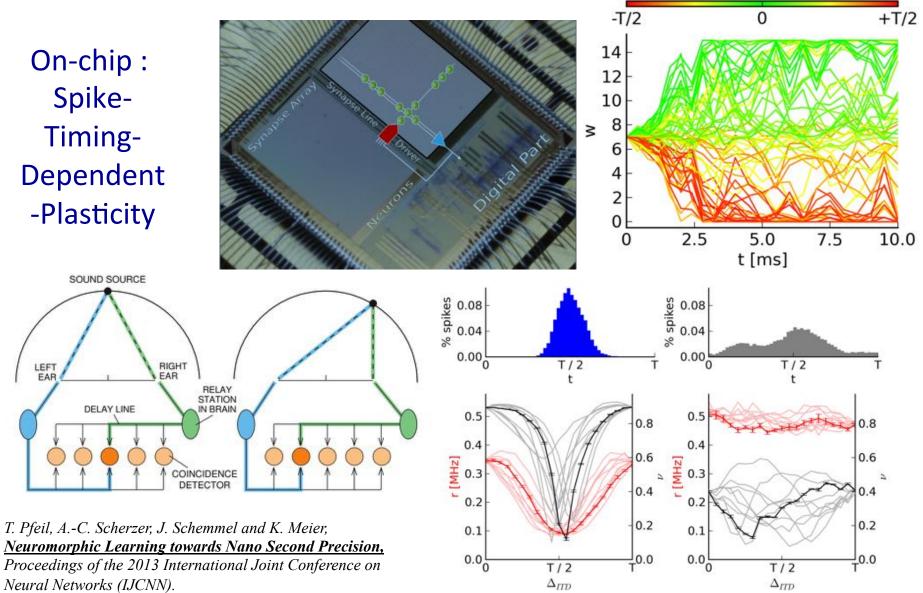
2 x hidden

https://arxiv.org/abs/1703.01909

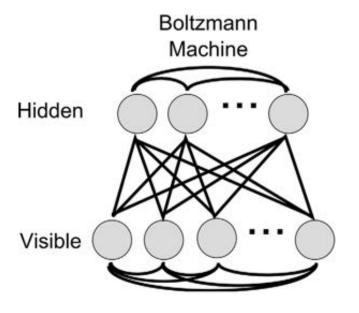
On-chip: Spike-Timing-Dependent -Plasticity

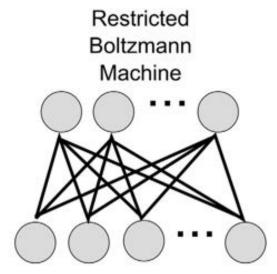
LEFT

EAR



Dallas, TX, USA: IEEE Press, 2013, pp. 869-873.





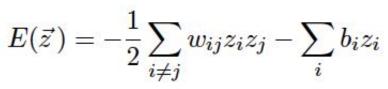
Boltzmann Machines

Networks of symmetrically connected stochastic nodes k

State of nodes described by vector of binary random variables z_k (0,1)

Probability for state-vector converges to a target Boltzmann-distribution $p(\vec{z}) = \frac{1}{Z} \exp \left[-E\left(\vec{z}\right)\right]$

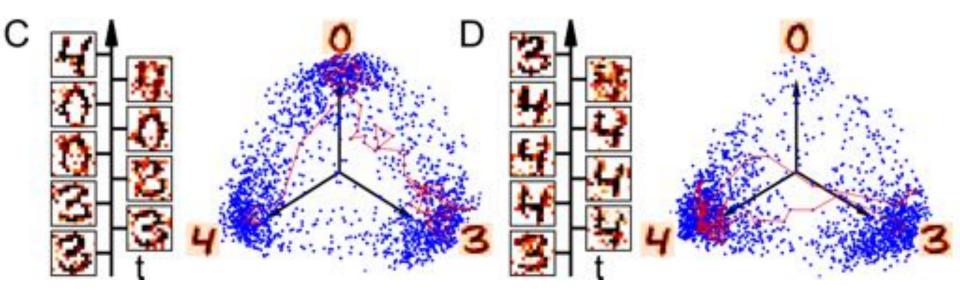
Energy function

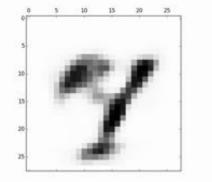


WHAT FOR ? Learn internal stochastic model of input space – Generate or discriminate

Learning specific input distributions by adjusting LOCAL interactions

- Clamp visible units to value of particular pattern reach thermal equilibrium
- Incremement interaction between any 2 nodes that are both on
- Run network freely and sample from stored probability distribution
- Infer from clamped input



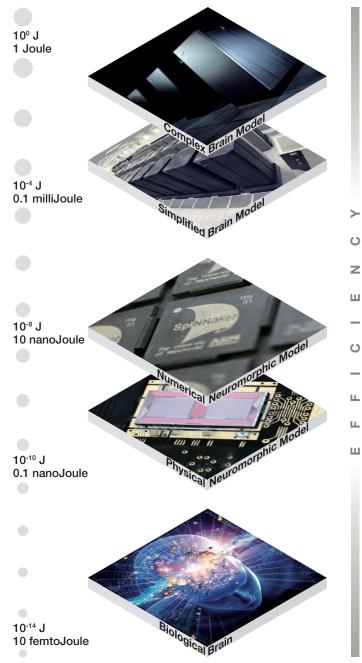


Free running "Dreaming" Generative

Inferring Input incompatible with 0 Discriminative

PhD, Mihai Petrovici, BA Luziwei Leng 2015

Energy Scales



Energy*Scales*

Energy used for a synaptic transmission

Filling the Gap

- Typically 10.000.000 times more energy efficient than state-of-the art HPC (comparable model)
- 10.000 less efficient than biology

Time <i>Scales</i>	Nature + Real-time	Simulation	Accelerated Model
Causality Detection	10 ⁻⁴ s	0.1 s	10⁻ ⁸ s
Synaptic Plasticity	1 s	1000 s	10 ⁻⁴ s
Learning	Day	1000 Days	10 s
Development	Year	1000 Years	3000 s
12 Orders of Magnitude			
Evolution	> Millenia	> 1000 Millenia	> Months
> 15 Orders of Magnitude			

Wide range of applications in particle physics

Offline data analysis

Spatial pattern detection and classification

- flavour-tagging
- quark/gluon jet separation
- particle ID
- track / cluster finding

Probability density calculation

- Lifetimes
- Masses

Online neural network trigger hardware systems

- tracking
- background suppression
- topologies

Good success, many real data publications Substantial effort in training

How far have we come ?

Excellent knowledge of structure
 Little knowledge of dynamics (prerequisite for a SM)
 Accelerated emulations method promising
 Very significant applications before understanding

An exciting field requiring strong experimental and theoretical skills – Physics may well play the crucial role towards a "standard model" of the brain