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Introduction

Bare coupling g0 ↔ β

Bare masses κu, κd , κs, . . .

Non-physical parameters, e.g. csw

⇓ Lattice-QCD
Meson masses amπ, amK , amD, . . .
Baryon masses amproton, amΩ, . . .
Decay constants afπ, afK , . . .
Static potential aV (r/a)

“Flow quantities” at flow time t/a2

. . .

Scale Setting

The task of assigning a value to a
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Natural units

A good choice of units simplifies the equations and reduces numerical
rounding errors

Quantum Mechanics
Natural units

Lengths in multiples of
√

~T
m

Times in multiples of T
Masses in multiples of m

S =

∫
dt
[

1
2

q̇2 + V (q)

]
⇒ Lattice action

S[q] = a
∑
j∈Z

[
1
2

(
qj+1 − qj

a

)2
+ V (qj )

]

Yang-Mills Theory
Natural units

Lengths in multiples of ~c
1 eV

Times in multiples of ~
1 eV

Masses in multiples of 1eV
c2

S =
1

2g2
0

∫
d4x tr [Fµν(x)Fµν(x)]

⇒ Lattice action

S[U] =
β

N

∑
j∈Z4

∑
µ<ν

Re tr[1− Pµν(a j)]

Pµν(x) = Uµ(x)Uν(x + aµ̂)U−1
µ (x + aν̂)U−1

ν (x)
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What is “Scale Setting”

In Quantum Mechanics (and all classical simulations):
I The lattice spacing a is an input parameter
I It can/should be varied to understand the discretization errors

in QCD
I The lattice spacing a is not a parameter of the lattice action
I It can be varied, by varying the (dimensionless) coupling g0

a ≈ 1
Λ

e−1/(2b0g2
0 )[b0 g2

0 ]−b1/2b2
0

Simple (but impractical) example
Use the proton mass mproton for the scale-setting:

I Choose g0=̂a
I Fix the bare masses mu = md , ms, . . . such that some ratios take

experimental values, e.g.
amπ

amproton
, amK

amproton
, . . .

I Determine a through a =
amproton

mexp
proton
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Some Issues

If amproton or mexp
proton has a large error, it will propagate to a and to every

dimensionful prediction of lattice QCD
amproton was computed at a finite g0, i.e. at a finite a

I It has a discretization error
→ a gets a discretization error
→ Every dimensionful prediction inherits this error (in addition to its own)

I Depending on the quantity with which the scale is set, one obtains quite
different values for a

In the ratio amproton

mexp
proton

I amproton is computed in a simplified model, e.g Nf = 2 + 1 QCD
I mexp

proton has Nf = 1 + 1 + 1 + 1 + 1 + 1 plus the rest of the standard model

⇒ Some care is needed. Is mproton the best choice? What else could be used?
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Desirable Properties of Scales

Relatively cheap and easy to measure
Some knowledge of a is needed already for the planning of a simulation
Small statistical errors
The experimental determination should be

I Precise
I Direct

The dependence on heavy quarks, electro-magnetism etc. should be
small (and/or well understood)
Weak quark mass dependence
(becomes important when simulations away from the physical pion mass
are considered)
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Masses

Two point functions of an operator O(x0) has a spectral decomposition

G(y0 − x0) = 〈O(x0)O†(y0)〉 =
∑

n

∣∣∣〈n|Ô|Ω〉∣∣∣2 e−En(y0−x0)

Use lattice symmetries to select a particular channel and momentum,
e.g.

I O(x0) = 1
L3

∑
x

ū(x)γ5d(x)

→ if |n〉 not a 0-momentum pseudo-scalar state: 〈n|Ô|Ω〉 = 0
→ dlog(G(t))

dt
t→∞−−−→ amπ

I O(x0) = 1
L3

∑
x
εabc(u>a (x)Cγ5db(x))uc(x)

→ if |n〉 not a 0-momentum baryon state: 〈n|Ô|Ω〉 = 0
→ − dlog(G(t))

dt
t→∞−−−→ amproton

Use smearing or distillation to enhance the overlap with the ground state
Excited states: much more difficult

I Consider several operators for the same channel O1, . . . ,ON
I Compute N × N correlation matrix Gkl (y0 − x0) = 〈Ok (x0)O†l (y0)〉
I Solve the GEVP G(t)vn(t , t0) = λn(t , t0)G(t0)vn(t , t0)
I λ1 ∼ e−E1t , λ2 ∼ e−E2t , . . .
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Example: Nucleon Correlator

[C.Alexandrou et al (2009)]

Nf = 2 ETMC
ensembles

L ∼ 2.13 fm

a ∼ 0.067 fm

mπ ∼ 489 Mev

mπ ∼ 368 Mev

0 5 10 15 20 25
0

0.5

1

a
M

e
ff
(t

)

t/a

10
−2

10
−1

10
0

∆
C

(t
) 

/ 
C

(t
)

10
−10

10
−5

C
(t

)

C(t) =
∑
x,y

〈
tr
[
(1 + γ0)O(t ,y)O†(0,x)

]〉
O(x) = εabc

(
u>a (x)Cγ5db(x)

)
uc(x), with smeared u and d quarks.
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Masses, statistical precision

The variance of C(t) corresponds to a 2pt-function with different quantum
numbers

relative error ∼
√

variance(t)
C(t)

t→∞−−−→ e−(E′−E)t

If E ′ > E , we have an exponential signal/noise problem!
This is the generic case, almost all 2pt functions have this problem

I Nucleon: relative error t→∞∼ e(mproton− 3
2 mπ)t phys.pt.

≈ et/0.27fm

I Ω-baryon: relative error t→∞∼ e(mΩ− 3
2 mηs )t phys.pt.

≈ et/0.31fm

The ground state mesons in the PS channel are spared

Korzec (DESY Zeuthen) Scale Setting 10.04.2017 9 / 44



Masses, other properties

Experiments are often very direct and precise
Corrections due to neglected heavy flavors:
understood and often tiny (theory of decoupling)

I E.g. the difference between Nf = 2 + 1 QCD and Nf = 2 + 1 + 1 QCD in low
energy quantities (like mproton) is

O
((

Λ
Mc

)2
)

Corrections due to iso-spin breaking and electro-magnetism:
For some cases understood in chiral perturbation theory.
Quark mass dependence:

I Very strong for would-be-Goldstone-bosons
I Rather weak for other states, e.g. Nucleon
I Exceptionally weak for mΩ on a m̄s = const trajectory

Korzec (DESY Zeuthen) Scale Setting 10.04.2017 10 / 44



Decay Constants

Defined through matrix elements 〈Ω|Aµ(0)|π(p)〉 = ipµfπ,
Aµ = ūγµγ5d

Measurement (here, with Wilson fermions and open boundaries in time)
I P rs: pseudo-scalar density with quarks r and s
I Ars

µ : improved axial current
I Measure the 2pt functions

f rs
P (x0, y0) = −a6

L3

∑
x,y

〈P rs(x)Psr (y)〉

f rs
A (x0, y0) = −a6

L3

∑
x,y

〈Ars
0 (x)Psr (y)〉

I Form a ratio

RPS =

[
fA(x0, y0)fA(x0,T − y0)

fP(T − y0, y0)

]1/2
x0−y0�1−−−−−−→

√
mPS

2
f bare
PS

I Renormalized, improved decay constant

fPS = ZA(g̃0)
[
1 + b̄A a trMq + b̃A amrs

]
f bare
PS
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Decay Constants
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Decay Constants, Properties

Good statistical precision (∼ 1%)
Moderate costs
No signal/noise problem
With Wilson fermions: needs renormalization and improvement

I cA, ZA known non-perturbatively
I b̄A, b̃A, bg only known in perturbation theory

Experimental determination not entirely direct
I fπ: experimentally accessible through π → `ν: fπVud
I fK : experimentally accessible through K → `ν: fK Vus

Vus may depend on other lattice calculations

Quark mass dependence: understood well in chiral perturbation theory
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Scales from Wilson Loops

Two point functions can be formed with

O(x0, r) =
∑

x

φ̄(x)

[
r−1∏
i=0

Uk (x + i k̂)

]
︸ ︷︷ ︸

possibly smeared

φ(x + r k̂)

Where φ is an infinitely heavy quark
The 2pt. function decays as G(t , r) ∼ e−V (r)t , where
V (r) is the static quark potential (energy needed to pull two quarks apart
to a distance r
Integrating out the static quarks leads to
A lattice computation leads to aV (r/a) at different r/a
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Static Quark Potential

“Determination of the Static Potential with Dynamical Fermions”
[M.Donnellan, F.Knechtli, B.Leder, R.Sommer (2011)]

Nf = 2 improved Wilson
fermions (CLS)
Operator basis with
different levels of HYP
smearing
t = T 

t = 0

Energy levels from the
solution of a GEVP 2 4 6 8 10 12 14 16

0.386

0.388

0.39

0.392

0.394

0.396

0.398

 

 

t/a

E
0
(t

,t
0
)

fit of effective mass
plateau average
GEVP, r/a = 7, t0/a = 2
GEVP, r/a = 7, t0/a = 5
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Sommer Scale

V needs additive renormalization, differences of Vs do not
→ static force F (rI/a) = V (r/a+1)−V (r/a)

a
rI = r + a

2 + O(a2),
with O(a2) computed such, that tree-level lattice artifacts are removed
from F
Family of scales defined implicitly

r2F (r/a)
!

= c ⇒ rc/a

Choose c such that discretization errors and statistical errors are small
I c = 1.65⇒ rc ≡ r0 Sommer-scale

[R.Sommer (1994)]
I c = 1.00⇒ rc ≡ r1

Used for instance in [C.Bernard et al (2000)]

Properties
I Weak quark mass dependence
I Reasonable statistical precision (below 1%)
I No inversions, but computation costs still significant
I Not accessible to experiments
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The Gradient Flow
Gradient flow ∼ (covariant) diffusion in “flow time” t
[M. Atiyah and R. Bott (1982)]

∂tBµ(t , x) = DνGνµ(t , x), Bµ(0, x) = Aµ(x)

Dµ = ∂µ + [Bµ, ·]
Gµν = ∂µBν − ∂νBµ + [Bµ,Bν ]

Renormalization properties can be studied in a 5D theory where the fifth
dimension is the flow time
Correlators of B at t > 0 need no renormalization
[M. Lüscher (2010)], [M. Lüscher and P. Weisz (2011)]

I Action density

E(t , x) = −1
2

∑
µ,ν

tr[Gµν(t , x)Gµν(t , x)]

I Topological charge density
Q(t , x) = . . .

Independent of t as long as t > 0

Korzec (DESY Zeuthen) Scale Setting 10.04.2017 17 / 44



Discretized Flow Equations

There is some freedom, how to define the flow equations on the lattice
I Wilson flow

a2 [∂tVµ(t , x)] Vµ(t , x)† = −g2
0 ∂x,µ SW[V ]︸ ︷︷ ︸

plaquette action

Vµ(t = 0, x) = Uµ(x)

Lie-algebra valued derivative: ∂x,µf (Uµ(x)) = T a d
dε f (eεT

a
Uµ(x))

∣∣
ε=0

I “Zeuthen flow” = Symanzik O(a2) improved flow
[A.Ramos, S.Sint (2015)]

a2 [∂tVµ(t , x)] Vµ(t , x)† = −g2
0

(
1 +

a2

12
∇∗µ∇µ

)
∂x,µ SLW[V ]︸ ︷︷ ︸

improved action

Vµ(t = 0, x) = Uµ(x)

Numerical solution of the differential equation: (adaptive) Runge-Kutta
methods
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Action Density
The simplest gauge-invariant operator that one may consider is the action
density E(t , x) = − 1

2

∑
µ,ν

tr[Gµν(t , x)Gµν(t , x)] A discretization can be used that

differs from that of the action, or of the flow-action
Plaquette
Epl(t , x) = − 1

2a4

∑
µ,ν

[
tr(Pµν(t , x) + Pµν(t , x)†)− 2Nc

]
(has O(a2) artifacts)
Clover
Ecl(t , x) = − 1

2

∑
µ,ν

tr
(
Gcl
µν(t , x)Gcl

µν(t , x)
)

Gcl
µν(t , x) = 1

8a2

(
− h.c.

)
(has different O(a2) artifacts)
Improved
Epl-cl = 4

3 Epl(t , x)− 1
3 Ecl(t , x)

(has O(a4) artifacts)
Other improved variants, e.g. ELW
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Flow Scales

Lattice artifacts depend on the combination of
I Lattice action

(cannot be changed easily)
I Flow action
I E discretization

Once 〈E(x , t)〉 is measured
(with hopefully small discretization errors)
One can form different scales

I t0:
t2 1

V

∑
x
〈E(x , t)〉 = 0.3 ⇔ t = t0 [M.Lüscher (2010)]

I w0:

t d
dt

(
t2 1

V

∑
x
〈E(x , t)〉

)
= 0.3 ⇔ t = w2

0 [S.Borsanyi et al (2012)]

I t1:
As t0 but with 0.3→ 2

3 [R.Sommer (2014)]

→ smaller O(a2) effects, larger statistical errors
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Properties of Flow Scales

High statistical precision
(sub ‰)
Somewhat largish lattice
artifacts
Weak quark mass
dependence
Inaccessible to experiments

a ∼
0.09fm
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Properties of Flow Scales

High statistical precision
(sub ‰)
Somewhat largish lattice
artifacts
Weak quark mass
dependence
Inaccessible to experiments

a ∼
0.05fm
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Comparison of Scales

mproton mΩ mπ,mK fπ fK t0, t1,w0 r0, r1

stat. prec.

cost

mu,d,s dep.

Exp. det.

︸︷︷︸
OK if m̄s=const

︸︷︷︸
OK for fixing mu,d

︸︷︷︸
OK as interm.
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Chiral Trajectories

In practice: most simulations do not have the physical mπ, mK , . . .
Simulations at the physical point are limited to relatively coarse a
But if we simulate off the physical point, how are the masses chosen?

1 Vary the light quark mass m̄u,d while keeping m̄s = m̄phys
s , m̄c = m̄phys

c
F Typically indirectly, by keeping some meson masses fixed
F Needs already a good idea about the lattice spacing
F Needs tuning: choose g0, κud , tune κs , κc

2 Vary the quark masses while keeping their sum constant
tr[M̄] = m̄u + m̄d + m̄s + . . . = const

F up to lattice artifacts this is equivalent to keeping the sum of bare masses
constant
κu + κd + κs + . . . = const

F The value of the constant has to be tuned such that the trajectory goes through
the physical point

F Needs tuning: choose g0, find (e.g. at the flavor-symmetric point) the const.
Partially a guess, because experiments do not tell us the hadron masses at
mu = md = ms
Alternative: tune at the physical point (impractical)

F The tuning is done only at the symmetric point, from there on:
change mud , while keeping the trace constant

F At heavy mud , ms becomes light (expensive)
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Symanzik Improvement

With massive Wilson fermions there are, apart of the well known csw
term, other terms at O(a), e.g.
tr[M]FµνFµν
They are absorbed in a re-definition of the bare parameters of the
continuum action, e.g.

g̃2
0 = g2

0

(
1 +

1
3

bg tr[M]

)

If M is changed, at constant g0: the lattice spacing changes by lattice
artifacts
With (even improved) Wilson fermions, these lattice artifacts are O(a)

If M is changed, at constant g0 and constant tr[M]
these lattice artifacts start at O(a2)
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Chiral Extrapolations

How hadron masses, decay constants etc. depend on the quark masses is
described by (various variants of) Chiral Perturbation Theory
Example

The pion and kaon decay constant in SU(3) chiral perturbation theory to
NLO
[J.Gasser, H.Leutwyler (1985)]

fπK ≡ 2
3

(fK +
1
2

fπ)

≈ f
[
1− 7

6
Lπ −

4
3

LK −
1
2

Lη +
16B trM

3f 2 (L5 + 3L4)

]
I Low energy constants L4, L5 defined at the scale µ = 4πf
I Chiral logs Lx = m2

x/(4πf )2 ln[m2
x/(4πf )2]

I Rather simple functional form if tr[M] = const

Depending on the quantity these formulae can become quite complicated
and full of unknown constants
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Mass Corrections

Before the scale-setting is complete, the relation
(β, κu/d , κs, . . .)↔ (a,mπ,mK , . . .)
is unknown.
⇒ Hitting a chiral trajectory that goes through the physical point requires
some luck + experience
Tuning (like amK

amproton
= const) is done only to some precision

(typically 1%-2%)
Statistical errors

⇒ It would be very useful to be able to change the bare masses after the
simulation run

Solutions

Mass reweighting
Corrections based on a Taylor expansion
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Mass Reweighting

det[D + m′] = det[D + m]
det[D + m′]
det[D + m]︸ ︷︷ ︸

w

⇒ 〈O〉m′ =

∫
fields e−S(m′)O∫

fields e−S(m′)

=

∫
fields e−S(m) w O∫

fields e−S(m) w

=
〈Ow〉m
〈w〉m
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Mass Reweighting
“One flavor mass reweighting in lattice QCD”
[J.Finkenrath, F.Knechtli, B.Leder (2014)]

if all eigenvalues of A + A† are positive

1
det A

=

∫
Dη e−η

†Aη

This is the basis of a stochastical estimation of det[D+m′]
det[D+m]

Improvements:
I Factorization w =

∏
l wl , where wl are smaller shifts

I Even/odd decomposition of D → improved stochastical estimators
I Reweighting two masses in opposite directions reduces the errors
→ allows larger mass shifts

Drawbacks
I Increased statistical errors
I Costly (stochastic estimator needs inversions)
I Correlators need to be re-measured at the target mass m′
I The target mass needs to be known
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Taylor-based Corrections

Small corrections in the bare masses amu,amd ,ams, . . . or in twisted
masses aµ can be approximated by (m stands for a bare (twisted) mass
in lattice units)

〈O〉m′ ≈ 〈O〉m + (m′ −m)︸ ︷︷ ︸
∆mq

d〈O〉m
dm

+ O(∆m2
q)

The necessary mass-derivative is

d〈O〉
dm

= −
〈

dS
dm
O
〉

+

〈
dS
dm

〉
〈O〉+

〈
dO
dm

〉

For many (purely gluonic) observables (e.g. t0): dO
dm = 0

⇒ measurements of dS
dm are enough
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Mass Dependence of the Action

Bare mass, Dq ≡ DW + mq〈
∂S
∂mq

〉
=

∑
x

〈q̄(x)q(x)〉

= −
∑

x

〈
tr
[
D−1

q (x , x)
]〉gauge

Bare twisted mass, Du/d ≡ DW + mcrit ± iγ5µ〈
∂S
∂µ

〉
= i

∑
x

〈ū(x)γ5u(x)− d̄(x)γ5d(x)〉

= i
∑

x

〈
tr
[
γ5(D−1

d (x , x)− D−1
u (x , x)

]〉gauge

= −2µ
∑
x,y

〈
tr
[
D−1

u
†
(x , y)D−1

u (x , y)
]〉gauge

Stochastic estimator for traces:
∑

x tr[A(x , x)] =
〈
η†Aη

〉noise

if 〈η〉noise = 0 and 〈ηa∗
α (x)ηb

β(y)〉noise = δx,yδa,bδα,β
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Mass Dependence of Meson Correlators

〈 dO
dm

〉
depends on the observable in question

Example: pseudo-scalar (ūγ5d) correlator

G(t) ∼
〈

tr
[

1
D + mu

γ5
1

D + md
γ5

]
︸ ︷︷ ︸

O

〉gauge

The necessary derivative in this case is

∂O
∂mu

= −tr

[(
1

D + mu

)2

γ5
1

D + md
γ5

]

Measurements require an extension of the existing measurement
program
Measurements require additional inversions
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Derived Observables

A “derived observable” f (〈O1〉, . . . , 〈ON〉,m)
Has the mass derivative

d f (〈O1〉, . . . , 〈ON〉, µ)

dm
=

∂f
∂m

+
N∑

i=1

∂f
∂〈Oi〉

d〈Oi〉
dm

.

⇒ Small shifts f (m + ∆m) ≈ f (m) + ∆m
df
dm

0.000 0.001 0.002 0.003 0.004 0.005
a∆mq

2.8

3.0

3.2

3.4

3.6

3.8

4.0

t 0
/a

2

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
a∆mq

0.052

0.054

0.056

0.058

0.060

0.062

0.064

a
f π
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Finite Volume Corrections

Hadron masses, decay constants etc. have different values at finite L
than in L =∞
Due to confinement: these effects are exponentially suppressed if

I mπL� 1
I fπL� 1

Rule of thumb (depends on the quantity and target precision)
I mπL & 4
I fπL & 2.4

A leading correction can be computed in chiral perturbation theory, here
for SU(2)
[G.Colangelo, S.Dürr, C.Haefeli (2005)]

mπ(L)−mπ = + 3
8π2

m2
π

f 2
πL K1(mπL) +O(e−

√
2mπL)

fπ(L)− fπ = − 3
2π2

Mπ
fπL K1(mπL) +O(e−

√
2mπL)

I K1 Bessel function of the second kind, K1(z) ∼
√
π/(2z)e−z
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Standard Model vs 2[+1+1] QCD

For quantities like hadron masses, the two largest differences between the
standard model and pure Nf = 2[+1 + 1] QCD are due to explicit isospin
symmetry breaking and due to electro-magnetic interactions

In nature mu 6= md ⇒ explicit isospin symmetry breaking
I Can be added to a simulation by reweighting, or using mass-derivatives
I Can be “removed” from experimental values by chiral perturbation theory

Quarks have charge and interact via QED⇒ even if mu = md ,
mproton 6= mneutron

I Adding to simulations is difficult
(massless photon↔ large finite L effects, need special boundary conditions
to accommodate charged states)

I Can be “removed” from experimental values by chiral perturbation theory

See [FLAG (2015/2016)] chapter 3.1.1 for an example, how to remove EM effects
from pion masses.
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A Real-Life Calculation

A real-life scale-setting calculation
“Setting the scale for the CLS 2+1 flavor ensembles”
[M.Bruno, T.K., S.Schaefer (2017)]

CLS 2+1 flavor Simulations
Scale setting with a combination of fπ and fK as scale
t0 is used as an intermediate scale
mπ and mK are used to fix the quark masses
A final precision of ∼ 1% is reached
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CLS Data Set: Algorithms

We use openQCD for large volume simulations
[M. Lüscher, S. Schaefer (2013)]

Very good solvers
I E/O preconditioning
I SAP preconditioning
I low mode deflation
I mixed precision
I optimized for intel and bluegene

Higher order integrators, multiple time scale integration
Mass preconditioning à la Hasenbusch
RHMC for third quark
Very high degree of flexibility
action→ product of pseudo-fermion actions
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CLS Data Set: the Ensembles

“Simulation of QCD with Nf = 2 + 1 flavors of non-perturbatively improved
Wilson fermions”
[M.Bruno et al (2014)]

Actions
I Lüscher-Weisz gauge action
I 2+1 flavors of improved Wilson fermions

non-perturbative csw [J.Bulava, S.Schaefer (2013)]
I Open boundary conditions in time

tree-level values for cF , cG

Chiral trajectory with mu + md + ms = const
such that φ4 = 8t0

(
m2

K +
m2
π

2

)
= 1.15 at the SU(3) symmetrical point

(educated guess)
Many lattice spacings (also quite fine ones)
Various pion masses, down to ∼ 200MeV
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Costs and Precision
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Costs and Precision
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Dimensionless Quantities

The experimental input is

mπ, mK

fπK = 2
3 (fK + fπ

2 )
has a weaker quark mass dependence than fπ or fK
(along our chiral trajectory)

We use t0 as “intermediate scale” and compute
φ2 = 8t0m2

π ∼ m̄u,d

φ4 = 8t0
(

m2
K +

m2
π

2

)
∼ m̄u + m̄d + m̄s

√
t0fπK

(Is needed to replace t0 by something measurable in the end)
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Experimental Input

Particle Data Book (2014)

m±π = 139.57018(35) MeV
m0
π = 134.9766(6) MeV

m±K = 493.677(16) MeV
m0

K = 497.611(13) MeV
fπ = 130.4(2)MeV
fK = 156.2(7)MeV

Corrected Experimental Input

[FLAG 2015/2016] In pure QCD one expects
mπ = 134.8(3) MeV
mK = 494.2(3) MeV
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Raw Data

Physical points assum-
ing that

φphys
4 = 1.226(19)

[ALPHA] , Nf = 2
φphys

4 = 1.117(52)
[BMW] , Nf = 2 + 1
φphys

4 = 1.049(12)
[HPQCD] ,
Nf = 2 + 1 + 1

φ
2

φ
4
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1
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Scale Setting Strategy

Instead chiral trajectory with mu + md + ms = const, use mass-derivatives
to shift to chiral trajectory with φ4 = const ≈̂ m̄u + m̄d + m̄s

Choose the target value of φ4, such that it is the physical one
But how? Wee would need tphys

0

Mass shift

1 Guess t0 in fm2 at the physical point: tguess
0

2 Use experimental input to compute φguess
2 and φguess

4
3 Change bare quark masses in all ensembles such, that φ4 = φ

guess
4

(we shift every quark mass by the same amount)
4 Compute

√
t0fπK on all shifted ensembles

Combined chiral/continuum extrapolation
→ function f (φ2,a2) that describes

√
t0fπK vs φ2

5 Read off the value of t0 at the physical point t0 = f (φguess
2 ,0)2/f phys

πK
2

6 is this t0 equal to tguess
0 ? If not, goto 1, if yes φguess

4 = φphys
4
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Continuum/Chiral extrapolations
Two fit functions

1 Taylor around the symmetrical point φsym
2 : linear term vanishes

Ansatz: f (φ2,a) = c0 + c1(φ2 − φsym
2 )2 + c2

a2

tsym
0

2 NLO Chiral perturbation theory
Ansatz: f (φ2,a) =

(
√

t0fπK )sym
[
1− 7

6 (Lπ − Lsym
π )− 4

3 (LK − Lsym
K )− 1

2 (Lη − Lsym
η )

]
+ c4

a2

tsym
0

At scale µ = 4πf , logarithms: Lx =
m2

x
(4πf )2 ln

[
m2

x
(4πf )2

]
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Results

√
8tphys

0 = 0.415(4)(2) fm

Alternatively:
√

t0fπK →
√

tsym
0 fπK in the extrapolations√

8tsym
0 = 0.413(5)(2) fm

Since this was measured in lattice units for every β, the value of a can be read
off directly

β a

3.4 0.08636(98)(40) fm
3.46 0.07634(92)(31) fm
3.55 0.06426(74)(17) fm
3.7 0.04981(56)(10) fm
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