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Results at the physical point

Approaching the physical point

- finite volume effects
→ set L ·mπ ≥ 3 better ≥ 4

this implies large lattices for small pion masses

- small lattice artefact’s −→ in ETMC ensembles ?

→ use O(a) improvement
→ use fine lattice spacings

- stable algorithms −→ in ETMC software ?

→ control of the smallest eigenvalue
→ efficient solvers

- large statistics O(100) to O(1000)
→ control of numerical costs
→ control of autocorrelation times −→ in ETMC ensembles ?
→ control of statistical errors −→ in ETMC ensembles ?

- physical quark masses
→ use efficient tunning conditions −→ in ETMC simulation effort?
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Overview- ETMC - Ensembles

nf = 2 + 1 + 1,
csw = 0
a ∼ 0.089, 0.082, 0.062
min(mπ) = 210 MeV

nf = 2, csw 6= 0
a ∼ 0.094 fm
min(mπ) = 130 MeV

nf = 2 + 1 + 1,
csw 6= 0
a ∼ 0.096, 0.083 fm
min(mπ) = 135 MeV
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ETMC - light sector
nf = 2 mass degenerated twisted mass operator:

D = DW (κ, csw)⊗ 1 + iµγ5 ⊗ τ3 =

[
DW + iγ5µ 0

0 DW − iγ5µ

]
where 1, τ3 is acting in flavor space

- γ5-hermiticity:
→ Determinant is positive and real

- for the squared operator follows:

D†D = D†WDW + µ2

smallest eigenvalue is protected by µ

- O(a)-improvement
mPCAC(κ) −→ 0

κ −→ κcrit
needs to be tuned

[Frezzotti, Rossi 2003]

Eigenvalue density of
Heo = γ5(Dee −DeoD−1
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The heavy mass – sector

Heavy sector: nf = 1+1 mass non-degenerated twisted mass
operator:

Dh = DW ⊗ 1 + iµγ5 ⊗ τ3 − ε⊗ τ1 =

[
DW + iγ5µ −ε
−ε DW − iγ5µ

]
where 1, τ3, τ1 is acting in flavor space

- Volume increases by factor 2
- smallest eigenvalues around strange quark mass

- γ5 ⊗ τ1 - hermiticity ensures real and positive determinant

detDh = det
√
D†hDh

for HMC hermitian operator necessary (square root)
using rational approximation of the square root
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HMC - Setup
Multigrid for light quark sector
Multigrid for heavy quark sector

Algorithm - Setup of HMC

Software: tmLQCD with DDalphaAMG

https://github.com/etmc/tmLQCD

https://github.com/sbacchio/DDalphaAMG

I Integrator: nested OMF-scheme order 2

[Omelyan,Mryglod,Folk 2003]

I Solver: Multi-Grid for twisted mass fermions
mixed-precision CG

[see next slides]

I Force for light sector:
Hasenbusch mass preconditioning
→ to suppress IR-noise
with factorization ρ ∼ 0.001; 0.01; 0.1

[Hasenbusch 2001]

I force for 1 + 1 sector:
rational approximation

cost at the physical point ?
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HMC - Setup
Multigrid for light quark sector
Multigrid for heavy quark sector

Solver - Using DD-alphaAMG for light quark sector

Work with Simone Bacchio, Karsten Karl, Matthias Rottmann, Andreas Frommer

- CG critical slowing down for mπ → 135 MeV
L ·mπ & 3 becomes expensive

Conjugate gradient solver:
cost ∝ 1/m2

π

Data generated on
V = 96× 483

a = 0.094 fm
mπ = 130 MeV
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HMC - Setup
Multigrid for light quark sector
Multigrid for heavy quark sector

Solver - Using DD-alphaAMG for light quark sector

Work with Simone Bacchio, Karsten Karl, Matthias Rottmann, Andreas Frommer

- CG critical slowing down for mπ → 135 MeV
L ·mπ & 3 becomes expensive

Adapting DDalphaAMG
solver to tm operator

- using a trick on the
coarse lattice by
µc ∼ 5µ

Results:

- speed up of CG by a
factor 100

- speed up of the HMC
by a factor ∼ 8

See also Simones Poster,
Karsten Karls talk,

[Frommer et al. 2016]
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Results at the physical point

HMC - Setup
Multigrid for light quark sector
Multigrid for heavy quark sector

DD-alpha AMG

Using DDalphaAMG solver for light quark sector: Speed up the HMC by a factor ∼ 8
⇒ Strange quark becomes expensive (more than a factor 2)

Adapting DDalphaAMG solver
for heavy quark sector

- extending projectors to
flavor space

- use same coarse subspace
as for the light sector

Results:

- speed up of a factor 5
(F4)

- speed up of the HMC by
a factor 2

[Simone Bacchio]
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Results at the physical point

HMC - Setup
Multigrid for light quark sector
Multigrid for heavy quark sector

Algorithmic part - Summary

for nf = 2 + 1 + 1

lattice size of V = 128× 643 at the physical point

−→ around 2.5 hours on 4096 CPUs

to reach larger lattices more code and algorithmic development to simulate even finer

lattice spacings a . 0.75 fm
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Results at the physical point

HMC - Setup
Multigrid for light quark sector
Multigrid for heavy quark sector

Approaching the physical point

- finite volume effects
→ set L ·mπ ≥ 3 better ≥ 4

this implies large lattices for small pion masses

- small lattice artefact’s
→ use O(a) improvement
→ use fine lattice spacings

- stable algorithms
→ control of the smallest eigenvalue
→ efficient solvers

large statistics O(100) to O(1000)
-→ control of numerical costs
→ control of autocorrelation times
→ control of statistical errors

- physical quark masses
→ use efficient tunning conditions
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Isospin breaking
Autocorrelation

Isospin - Symmetry

twisted mass discretization breaks Isospin symmetry

⇒ Pion triplet is splitted up:
neutral pion mass is lighter than the charged

in chiral perturbation theory

(m2
π0 −m2

π± ) = −c0 · a2

→ vanished for a→ 0

for c0 > 0:
neutral pion mass can be zero for non-zero light quark masses
→ phase transition close to small neutral pion masses

- physical quark masses can not be reached if the isospin splitting is too large

- autocorrelation times increases
→ tunning of κcrit becomes a non-trivial task for µ→ µphys

−→ lets look to our ensembles
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Results at the physical point

Isospin breaking
Autocorrelation

Isospin breaking in nf = 2 + 1 + 1 (non-clover)

using the fit-function:
w0m2

π0 = α+ β[mπ±w0]2 + γa2/w2
0

I α = 0.001(1)

I β = 1.003(26)

I γ = −0.102(2)

large isospin breaking in
the pion system
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Results at the physical point

Isospin breaking
Autocorrelation

Isospin breaking in nf = 2 (clover)
For nf = 2 with clover term the error is larger than the splitting

using the fit-function:
mπ0 = α+ βmπ±w0

I α = 0.0003(14)

I β = 0.94(4)

I ( γ = −−
one lattice spacing )

pion mass difference
is for lattice spacing of
a ∼ 0.0936
neglect-able
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Isospin breaking
Autocorrelation

Autocorrelation in nf = 2 + 1 + 1 (non-clover)

I here we use mπ0 instead of mπ±

I no a-dependence for a ∈ [0.06; 0.09]

using the fit-function:
τint = c · (w0mπ0 )α

I α = −1.7(5)

→ τint scales with m−2
π0
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Isospin breaking
Autocorrelation

Autocorrelation in nf = 2 (clover)

I using mπ0 although (here nf = 2) is similar to mπ± )

I only one lattice spacing a = 0.094 fm

using the fit-function:
τint = c · (w0mπ0 )α

I α = −0.56(51)

when assuming τint scales
with m−2

π0 looks OK
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nf = 2
nf = 2 + 1 + 1

Error analysis on nf = 2 clover ensembles with a = 0.094 fm

Error Scaling at the physical point:

We will use the standard deviation with the integrated autocorrelation time:

σ =
√
2σstandart ·

√
τint

we know that

τint ∝
1

m2
π

−→ standard deviation will have a pion mass dependence

here we will use the nf = 2 ensembles
to understand the error

(preliminary, no-error for the standard deviation)
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nf = 2
nf = 2 + 1 + 1

Error Scaling in nf = 2 - Pion decay constant

α = −1.8
β = −1.1

100 150 200 250 300 350
0

20

40

60

80

100

120

m
π
 [MeV]

σ
(f

π
) 

[M
e
V

]

 

 

Large Size

Small Size

20 40 60 80
0

20

40

60

80

100

120

L

σ
(f

π
) 

[M
e
V

]

 

 

m
π
 = 130

m
π
 = 240

m
π
 = 330

17 / 23



Algorithm
Error-scaling and Tunning

Results at the physical point

nf = 2
nf = 2 + 1 + 1

Error Scaling in nf = 2 - Pion decay constant

using the fit-function:

σf (L,mπ) = kLαmβπ

expected L dependence ∝ 1/
√
L3

(time-slice sources)

α = −1.8
β = −1.1
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nf = 2
nf = 2 + 1 + 1

Error Scaling in nf = 2 - Plaquette

α = −2.1
β = −0.96
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nf = 2
nf = 2 + 1 + 1

Error Scaling in nf = 2 - Plaquette

using the fit-function:

σP (L,mπ) = kLαmβπ

expected L dependence ∝ 1/
√

(T · L3) = 1/(
√
2L2)

(Volume average)

α = −2.1
β = −0.96
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nf = 2
nf = 2 + 1 + 1

ETMC effort in nf = 2 + 1 + 1 - tunning
Tunning of κcrit

mPCAC(κ)→ 0

mPCAC = a(µ) + b(µ)κ becomes a fine tuning problem

cost(L,mπ) ∝
1

m
2[3]
π

L5[6]

if for each µ need new three κ-values

it becomes expensive
at L ≥ 48
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nf = 2
nf = 2 + 1 + 1

ETMC effort in nf = 2 + 1 + 1 - effective pion–mass at the physical point

effective mass plateau of the pion on nf = 2 + 1 + 1 clover, V = 128× 643
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nf = 2
nf = 2 + 1 + 1

ETMC effort in nf = 2 + 1 + 1 - effective nucleon–mass at the physical
point

effective mass plateau of the nucleon on nf = 2 + 1 + 1 clover, V = 128× 643,
64 configs a 8 point sources
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nf = 2
nf = 2 + 1 + 1

Approaching the physical point - Conclusion

- finite volume effects
→ set L ·mπ ≥ 3 better ≥ 4

this implies large lattices for small pion masses −→ on-going simulations OK

- small lattice artefact’s −→ twisted mass is order a-improved

→ use O(a) improvement
→ use fine lattice spacings

- stable algorithms, −→ tmLQCD with DDalphaAMG

→ control of the smallest eigenvalue −→ smallest EV bounded by µ
→ efficient solvers −→ MG solver works for efficient for small pion mass

- large statistics O(100) to O(1000)
→ control of numerical costs −→ feasible for V = 128× 643

→ control of autocorrelation times −→ scales with 1/m2
π0

→ control of statistical errors −→ works for large lattices (at least in fπ, P . . .)

- physical quark masses
→ use efficient tunning conditions −→ can become complicated for large lattices

and small pion masses
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nf = 2
nf = 2 + 1 + 1

Thanks

to the audience

to all members of the ETM collaboration
especially which are involved in the Simulation effort

special thanks to Urs Wenger and Carsten Urbach for providing data used here
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