(Towards) CLS simulations at physical pion mass

Daniel Mohler

Zeuthen, April 11th, 2017

Representing the CLS effort With plots from Hubert Simma, Jakob Simeth

Daniel Mohler (HIM)

(Towards) CLS simulations at physical pion mass

Zeuthen, April 11th, 2017 1/31

A ∃ ► ∃ ∃ < ∩Q ∩</p>

Outline

Introduction - The CLS 2+1 flavor ensembles

- The CLS 2+1 flavor ensembles Key features
- Landscape of CLS ensembles
- Towards the physical point
 - Autocorrelation times towards the physical point
 - Statistical uncertainty towards physical light-quark masses
- Simulations and challenges: "X200"
 - Thermalization strategy
 - Current status

Conclusions and Outlook

Outline

Introduction - The CLS 2+1 flavor ensembles

- The CLS 2+1 flavor ensembles Key features
- Landscape of CLS ensembles

Towards the physical point

- Autocorrelation times towards the physical point
- Statistical uncertainty towards physical light-quark masses

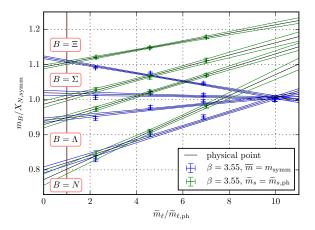
Simulations and challenges: "X200"

- Thermalization strategy
- Current status

Conclusions and Outlook

Coordinated Lattice Simulations - Members

- Berlin (NIC/DESY-Zeuthen/HU Berlin)
- CERN
- Mainz
- Madrid
- Münster
- Odense/ CP3-Origins
- Regensburg
- Rome (Roma I, Roma II)
- Wuppertal


The CLS 2+1 flavor ensembles – Key features

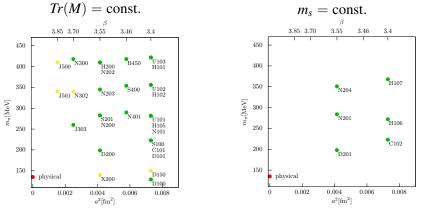
- Open boundary conditions to avoid topological freezing for $a \rightarrow 0$
- Twisted mass reweighting (for the light quarks)
- Simulation along trajectory with fixed Tr(M)
- Additional simulations along trajectories with fixed strange quark mass $m_s = \text{const.}$ and with $m_s = m_l$
- Flexible simulations with OpenQCD

```
http://luscher.web.cern.ch/luscher/openQCD/
```

- Nested hierarchical integrators
- Hasenbusch-style mass preconditioning with an arbitrary number of pseudofermion pairs
- Rational approximation (+ reweighting) for the strange quark
- Deflation acceleration and chronological solver
- A number of solvers

Baryon masses: trajectory with fixed Tr(M) vs. $m_s = \text{const.}$

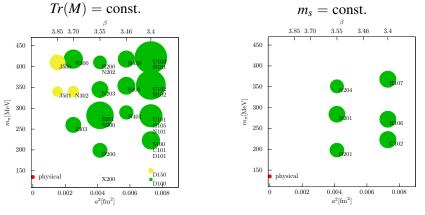
plot from Bali et al. RQCD, arXiv:1702.01035


• Example of octet baryon masses at $a \approx 0.064$ fm (from RQCD)

• Illustrates typical behavior

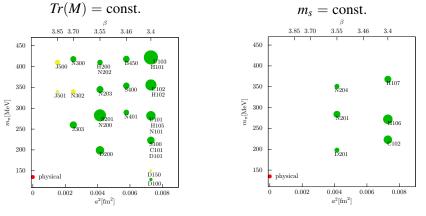
Daniel Mohler (HIM)

(Towards) CLS simulations at physical pion mass


CLS 2+1 flavor ensembles: Overview

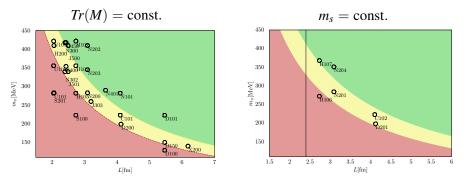
plots by Jakob Simeth, RQCD

- Letters in the name denote the aspect ratio T/L; First digit encodes β
- Ensembles at 5 lattice spacings and with a range of $M_{\pi} \leq 420 \text{MeV}$
- Ensembles to control (or exploit) finite volume effects


CLS 2+1 flavor ensembles: Statistics

plots by Jakob Simeth, RQCD

- > 4000 MDU for many ensembles Typically save 1 configuration every 4 MDU
- target statistics chosen considering largest τ_{int} (YM action density)


CLS 2+1 flavor ensembles: Statistics

plots by Jakob Simeth, RQCD

- > 4000 MDU for many ensembles Typically save 1 configuration every 4 MDU
- target statistics chosen considering largest τ_{int} (YM action density)

CLS 2+1 flavor ensembles: Volumes used

plots by Jakob Simeth, RQCD

- red: $m_{\pi}L \leq 4$; yellow: $4 \leq m_{\pi}L \leq 5$; green $5 \leq m_{\pi}L$
- Most ensembles with $m_{\pi}L \geq 4$
- Some smaller volumes to check finite size effects

EL SAR

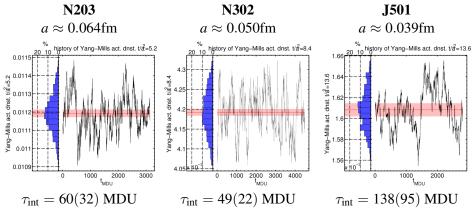
Outline

Introduction - The CLS 2+1 flavor ensembles

- The CLS 2+1 flavor ensembles Key features
- Landscape of CLS ensembles

Towards the physical point

- Autocorrelation times towards the physical point
- Statistical uncertainty towards physical light-quark masses

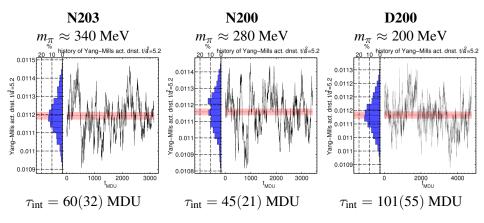

Simulations and challenges: "X200"

- Thermalization strategy
- Current status

Conclusions and Outlook

Autocorrelation towards the continuum limit

Action density at t_0 as defined by $t^2 \langle E \rangle = 0.3$


- Autocorrelation time is expected to increase significantly
- Uncertainty is still sizable

Zeuthen, April 11th, 2017

ELE DOG

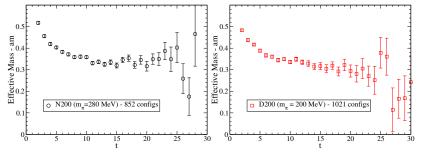
Autocorrelation towards physical quark masses

Action density at t_0 as defined by $t^2 \langle E \rangle = 0.3$

EL SAR

Noise/Signal at light quark masses - Introduction

• For the nucleon we have (argument by Parisi, Lepage)

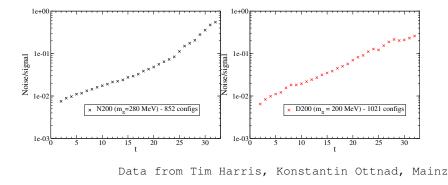

$$N\sigma_{N,\mathbf{p}=0}^{2} = \left\langle C_{N}(\mathbf{p}=0,t;m)^{2} \right\rangle - \left\langle C_{N}(\mathbf{p}=0,t;m) \right\rangle^{2}$$
$$\propto Z_{3\pi} e^{-3m_{\pi}t} + Z_{N}^{2} e^{-2m_{N}t}$$

• The noise to signal ratio therefore degrades exponentially

$$rac{\sigma_N(t)}{\langle C_N(t)
angle}\simeq rac{1}{\sqrt{N}}\mathrm{e}^{\left(m_N-rac{3}{2}m_\pi
ight)t}$$

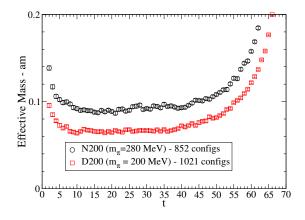
• Similar argument for Nuclei, heavy mesons, etc.

Nucleon effective masses



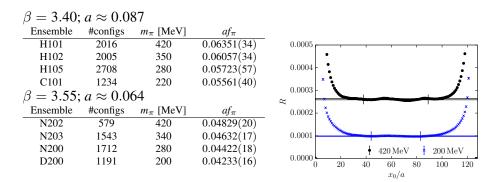
Data from Tim Harris, Konstantin Ottnad, Mainz

Setup


- All-mode-averaging (AMA)
 - 12 ($n_c \times n_D$) exact inversions and 16 \times 12 sloppy inversions
- Results from sources in a single timeslice
- Effective mass from the local-smeared correlator

Nucleon noise/signal

- Slope in (most of) plateau region does not reach asymptotic value (given by $m_N \frac{3}{2}m_\pi$)
- Suggests that in practice noise/signal scaling is not as severe
- Exponential growth qualitatively observed


Pion effective masses

- Strong effects from open boundary visible
- These are well understood
- There are plenty of usable timeslices
- Note: Thermal effects (with periodic bc) can also be a nuisance

Pion decay constant

Results from Bruno, Korzec, Schaefer, arXiv:1608.08900

ELE DOG

17/31

Outline

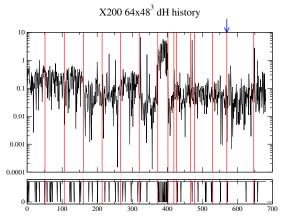
Introduction - The CLS 2+1 flavor ensembles

- The CLS 2+1 flavor ensembles Key features
- Landscape of CLS ensembles

2 Towards the physical point

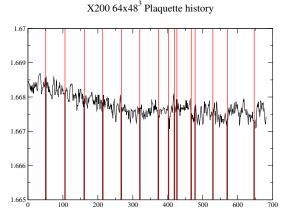
- Autocorrelation times towards the physical point
- Statistical uncertainty towards physical light-quark masses

Simulations and challenges: "X200"


- Thermalization strategy
- Current status

Conclusions and Outlook

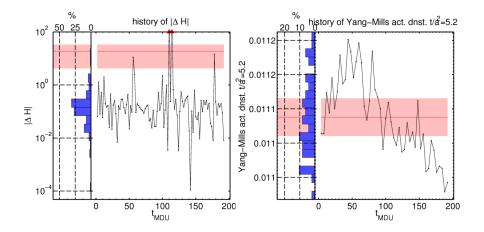
"X200" –Description and thermalization strategy


- Physical ud/s run at $\beta = 3.55$ ($a \approx 0.064$ fm)
- To keep $m_{\pi}L \ge 4$: $L^3 \times T = 96^3 \times 192$
- Thermalization strategy:
 - Start from an SU(3) run with 3 light quarks and periodic boundary conditions
 - Perform a number of runs to thermalize this small volume $(L^3 \times T = 48^3 \times 64)$
 - **③** Triple the time extent $48^3 \times 64 \rightarrow 48^3 \times 192$
 - **(**) Double the spatial extent $48^3 \times 192 \rightarrow 96^3 \times 192$
- At this fairly coarse lattice spacing periodic boundary conditions are chosen

Small volume run - dH history

Acceptance history for the thermalization of a small volume physical quark mass run. The vertical red lines indicate changes of run parameters. The arrow indicates where the target quark masses have been reached.

Small volume run - Plaquette history


Plaquette history for the thermalization of a small volume physical quark mass run.

• Overall no significant difficulty in (partially) thermalizing the small volume

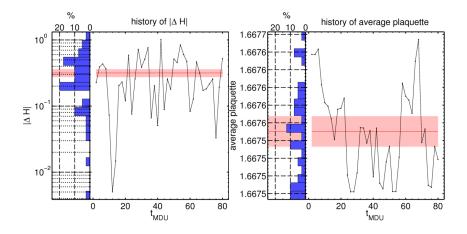
Daniel Mohler (HIM)

(Towards) CLS simulations at physical pion mass

Intermediate run of size $L^3 \times T = 48^3 \times 192$

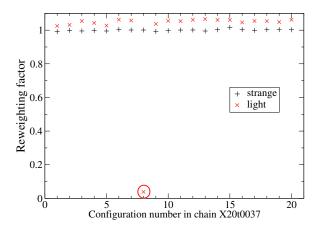
Zeuthen, April 11th, 2017 22

22/31

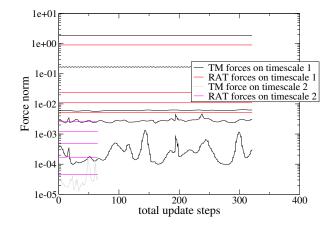

ъ

Challenges

- Runs with $L^3 \times T = 48^3 \times 64$ proceeded smoothly
- Runs at intermediate volume needed various minor parameter adjustments (more frequent updates of the deflation subspace)
- Runs with $L^3 \times T = 96^3 \times 192$
 - Run only stable with large deflation blocksize $6^4 \rightarrow 6 \times 4 \times 8^2 \rightarrow 8 \times 4 \times 8^2$
 - Large deflation blocksize was needed in order to maintain a manageable size of the little Dirac operator
 - \rightarrow Iteration counts higher than desirable/ deflation not as efficient
 - Indicates that a multigrid setup with 3 levels might be preferable for this lattice volume (but not obvious that it would pay off)
 - Even larger lattices would likely need further algorithmic improvements


くロット (四) (モット (ヨット (日))

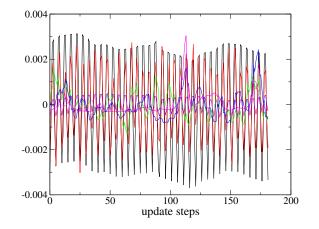
JUQUEEN \rightarrow Cluster MOGON II (JGU Mainz)


- First stable run not yet fully thermalized
- Run uses local partition of size 24×8^3 and 692 nodes/ 13824 cores
- Made possible by early usage time on Mogon II

JUQUEEN \rightarrow Cluster MOGON II (JGU Mainz)

• Reweighting factors for first stable run; mostly small fluctuations

Further improvements: A look at the force norms

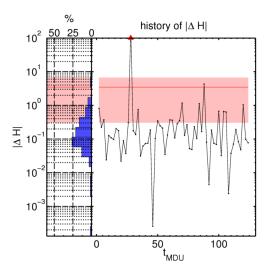


- integrators: lvl0 and lvl1: 4th order Omelyan integrator; lvl2: 2nd order Omelyan integrator
- lvl 2 forces are updated less often
- Lead to a slight adjustment in Hasenbusch masses

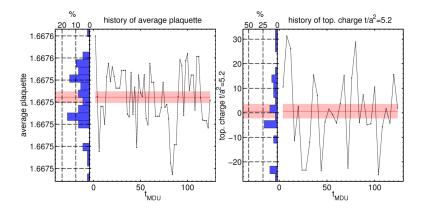
Daniel Mohler (HIM)

(Towards) CLS simulations at physical pion mass

After some initial changes: A look at the norm fluctuations


- after various tests (rearrangements of forces, further Hasenbusch masses, etc.)
- It seems that observed dH is largely driven by the force fluctuations

Daniel Mohler (HIM)


(Towards) CLS simulations at physical pion mass

Plots from the current run: dH

Acceptance: 0.790(53) Shown: 124 MDU, 31 configurations Completed (as of today): 188 MDU, 47 configurations

Plots: average Plaquette & topological charge

- Proper analysis will need a much longer chain
- Looks very promising

Outline

Introduction - The CLS 2+1 flavor ensembles

- The CLS 2+1 flavor ensembles Key features
- Landscape of CLS ensembles

2 Towards the physical point

- Autocorrelation times towards the physical point
- Statistical uncertainty towards physical light-quark masses
- Simulations and challenges: "X200"
 - Thermalization strategy
 - Current status

Conclusions and Outlook

- Large library of CLS 2+1 flavor ensembles
- Many physics studies started (and a number close to publication)
- Stable run at (very close to) physical m_l, m_s with $a \approx 0.064$ fm
- Not enough statistics for a detailed study of autocorrelation, pion masses, nucleon masses, decay constants, ...
- might already profit from a lvl3 multigrid setup at the current lattice volume

Thank you!

Daniel Mohler (HIM)

(Towards) CLS simulations at physical pion mass