HPC-LEAP Mid-Term Meeting: ESR4

Felix Milan

Prof. Luca Biferale, Prof. Mauro Sbragaglia, Prof. Federico Toschi

University of Rome Tor Vergata/Technical University of Eindhoven

18.04.2017

Outline

- Academic training
- 2 Introduction
- Research results
- 4 Outlook

Academic background and training during HPC-LEAP

Academic background

- Bachelor of Science in Physics at University of Bayreuth
- Master of Science in Theoretical Physics at Leiden University

Academic background and training during HPC-LEAP

Academic background

- Bachelor of Science in Physics at University of Bayreuth
- Master of Science in Theoretical Physics at Leiden University

HPC-LEAP Workshops/Secondment

- HPC-LEAP workshop series in numerical analysis and algorithms (CoS-1) in Wuppertal and Juelich
- HPC-LEAP workshop series in HPC architetctures and numerical methods (CoS-2) in Juelich and Dublin
- HPC-LEAP workshop "HPC technologies in complex and turbulent flows" in Rome (oral presentation)
- planned secondment at University of Wuppertal (BUW) in preconditioning methods

Other venues

- JMBC course "Turbulence" in Delft
- CISM school "Multiscale Modeling of Flowing Soft Matter and Polymer Systems" in Udine
- conference "Lattice Boltzmann 2016" in Rome
- DSFD 2017 conference in Erlangen, oral presentation:
 "Multi-scale LBM simulations of droplets in time-dependent flows"

Droplets in turbulence

Carreer Development Plan (CDP)

- Optimal algorithms for modelling finite size particles with internal dynamics in turbulent flows
- Two-way coupling approach (Eulerian-Lagrangian) via a combined LBM-pseudo-spectral algorithm

Droplets in turbulence

Carreer Development Plan (CDP)

- Optimal algorithms for modelling finite size particles with internal dynamics in turbulent flows
- Two-way coupling approach (Eulerian-Lagrangian) via a combined LBM-pseudo-spectral algorithm

The meso-scale: between fields and particles

Navier-Stokes equations

$$abla \cdot \mathbf{v} = 0$$
 $\partial_t \mathbf{v} + \mathbf{v} \cdot
abla \mathbf{v} = -rac{1}{
ho}
abla
ho +
u
abla^2 \mathbf{v}$

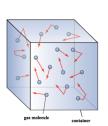
Hamilton's equations

$$\dot{\mathbf{q}}_{i} = \frac{\partial H(\{\mathbf{q}_{i}, \mathbf{p}_{i}\})}{\partial \mathbf{p}_{i}}$$

$$\dot{\mathbf{p}}_{i} = -\frac{\partial H(\{\mathbf{q}_{i}, \mathbf{p}_{i}\})}{\partial \mathbf{q}_{i}}$$

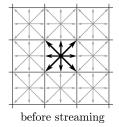

The meso-scale: between fields and particles

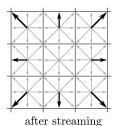

Navier-Stokes equations


$$abla \cdot \mathbf{v} = 0$$
 $\partial_t \mathbf{v} + \mathbf{v} \cdot
abla \mathbf{v} = -rac{1}{
ho}
abla
ho +
u
abla^2 \mathbf{v}$

Hamilton's equations

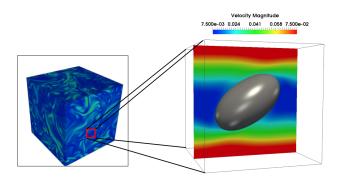
$$\dot{\mathbf{q}}_i = \frac{\partial H(\{\mathbf{q}_i, \mathbf{p}_i\})}{\partial \mathbf{p}_i}$$
$$\dot{\mathbf{p}}_i = -\frac{\partial H(\{\mathbf{q}_i, \mathbf{p}_i\})}{\partial \mathbf{q}_i}$$


Boltzmann equation and Lattice Boltzmann Equation (LBE)


$$\underbrace{f_i(\mathbf{x},t) + \mathbf{v} \cdot \nabla f(\mathbf{x},t)}_{\mathbf{f}_i(\mathbf{x}+\mathbf{c}_i\Delta t,t+\Delta t) - f_i(\mathbf{x},t)} = \underbrace{\Delta t \operatorname{Coll}(f_i(\mathbf{x},t))}_{\mathbf{Collision}}$$

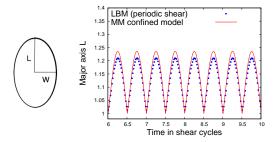
The meso-scale: the Lattice Boltzmann Method

Boltzmann equation and Lattice Boltzmann Equation (LBE)


$$\underbrace{f_i(\mathbf{x},t) + \mathbf{v} \cdot \nabla f(\mathbf{x},t)}_{\mathbf{Streaming}} = \underbrace{\operatorname{Coll}(f(\mathbf{x},t))}_{\mathbf{Collision}}$$
Collision

- 50-00-----8

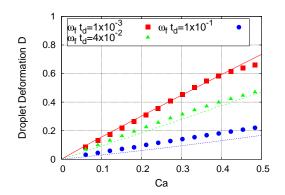
LBM simulations of droplets in time-dependent flows


Scale separation: turbulent flow \leftrightarrow droplet size

Quantitative analysis

Maffettone-Minale model

$$\frac{dM}{dt} = \underbrace{\left[f_2(\mathit{Ca})(S \cdot M + M \cdot S) + \Omega \cdot M - M \cdot \Omega\right]}_{\text{droplet stretching}} - \underbrace{f_1(\mathit{Ca})R(M)}_{\text{droplet relaxation}}$$


M: Droplet deformation tensor S, Ω : Shear tensor parts Ca: Capillary number (shear / surface forces)

Parameters

 t_d : Droplet relaxation time

 ω_f : shear frequency

Deformation D for droplet response factors $\omega_f t_d$

Conclusion and outlook

Accomplished tasks:

- LBM algorithm modelling a time-dependent boundary condition for an external flow field implemented and tested
- successful benchmark of the deformation of a finite size particle with internal dynamics in a synthetic shear flow

Future plans:

- replacement of the external synthetic flow with a turbulent signal produced via a pseudo-spectral code
- quantitative multi-scale analysis of droplet morphology in a turbulent flow

Acknowledgements

