

Where innovation starts

Università di Roma

HPC-LEAP Mid-term Meeting ESR 7

Xiao Xue^{1,2}, Luca Biferale², Mauro Sbragaglia², Federico Toschi¹

¹TU Eindhoven ²University of Rome "Tor Vergata"

> Berlin, Germany 18. Apri. 2017

Contents

- Introduction
- Career development plan
- Current progress:
- Influence of thermal fluctuating on ligaments break-up
- Wettability of particle in multicomponent fluid
- Future research plan

Introduction about myself

Education:

<u>Bachelor</u>: Control Science and Engineering Harbin Institute of Technology, Harbin, China Boston University, Boston, U.S.A. (Summer semester)

<u>Master</u>: Computational Science and Engineering **Technical University of Munich**, Munich, **Germany ETH Zurich**, Zurich, **Switzerland** (Master thesis)

Ph.D.: Physics

Eindhoven University of Technology, Eindhoven, the Netherlands *University of Rome Tor Vergata*, Roma, Italy

Innsbruck, 2017

Secondments:

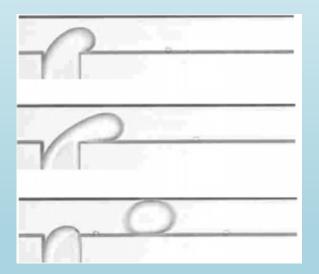
<u>Eurotech</u>: M₂₇ – M₃₀ Scaling and performance tests of novel algorithms

Experience in HPC-LEAP

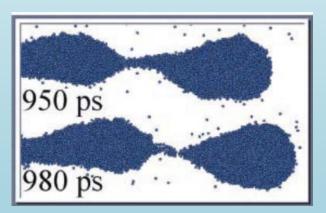
Experience in HPC-LEAP:

Workshops:

- 1. Numerical analysis and algorithms towards exascale, Wuppertal, Germany (COS-1); Juelich, Germany (COS-2)
- 2. School on HPC architectures and large-scale numerical computation, Juelich, Germany (COS-1); Dublin, Ireland (COS-2)
- 3. JBMC course on computational fluid dynamics in turbulence, Delft, The Netherlands
- 4. Lattice Boltzmann 2016, *Rome, Italy*
- 5. HPC Applications to complex and turbulent flows, *Rome, Italy*

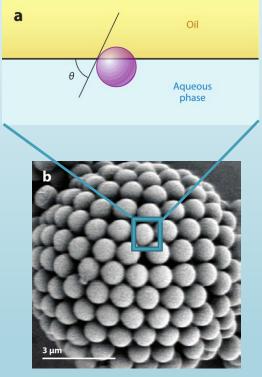

Conferences & talks:

- 1. Talk: Applications of fluctuating lattice Boltzmann, HPC Applications to complex and turbulent flows, Rome, Italy, Oct, 2016
- 2. Talk: Influence of thermal fluctuations on a ligament breaks up: a fluctuating lattice Boltzmann study, **FLOWING MATTER 2017**, Porto, Portugual, Jan 2017
- 3. Talk: Influence of thermal fluctuations on ligaments break-up: a fluctuating lattice Boltzmann study, International DSFD conference 2017, Erlangen, Germany, July 2017
- 4. Attend: FOM physics conference, Veldhoven, the Netherlands, Jan 2017


Career Development Plan & motivation

CDP:

- 1. High Performance computing in novel LBM algorithm
- 2. Applications of Fluctuating hydrodynamics
- 3. Finite size particles in Micro-nano fluidics



Droplet formation in T-shaped microchannel¹ 1. S Van der Graaf, et al. Langmuir, 2006

Breakup of nanojets²

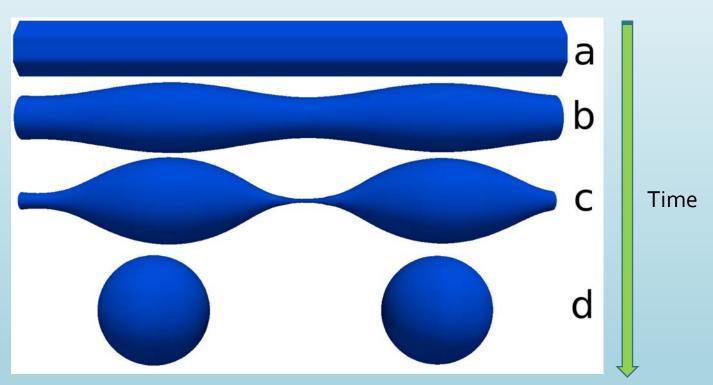
2. Michael Moseler and Uzi Landman, Science, 2000

Pickering emulsions^{3,4,5}

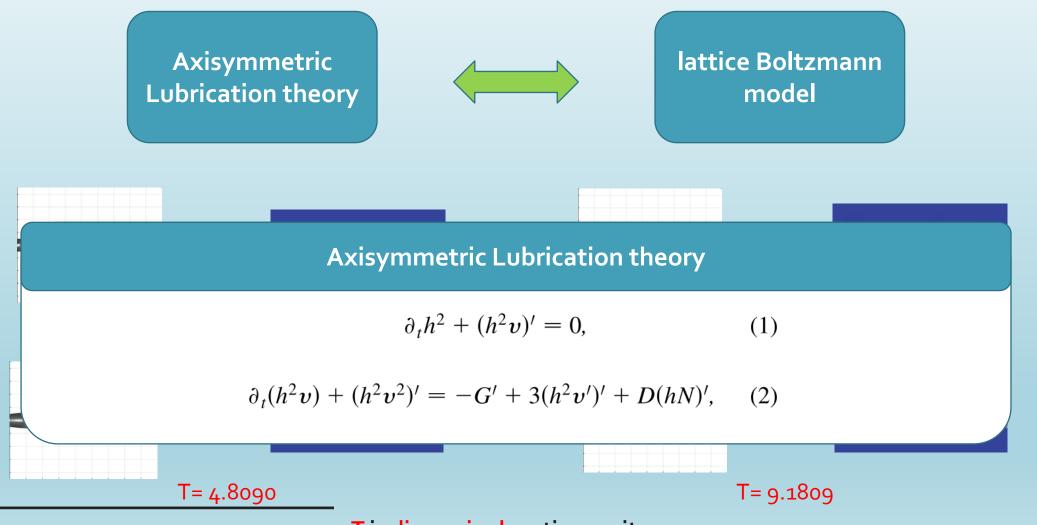
3. CC Berton-Carabin, et al. Annual review of food science and technology, 20154. Aveyard et al. (2003)

5. Dinsmore et al. 2002).

The methodology of FLBM


Ę

 Fluctuating Multicomponent Lattice Boltzmann Model
D. Belardinelli,^{1,*} M. Sbragaglia,^{1,†} L. Biferale,^{1,‡} M. Gross,^{2,3,§} and F. Varnik^{4,¶}
¹Department of Physics, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome, Italy.
²Max-Planck-Institut für Intelligente Systeme, Heisenbergstraße 3, 70569 Stuttgart, Germany Institut für Theoretische Physik IV, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany (1 Interdisciplinary Centre for Advanced Materials Simulation (ICAMS), Ruhr-Universität Bochum, Universitätsstr. 150 44780 Bochum, Germany (Dated: November 16, 2016)

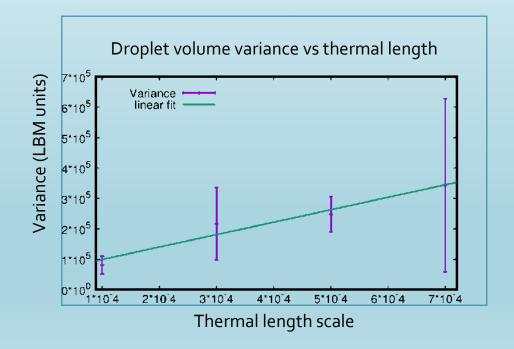

Ligament breaks up

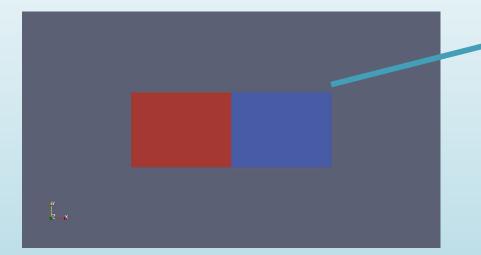
- Periodic boundary condition
- Measurement: marching tetrahedron algorithm

Evolution of ligament break-up dynamics

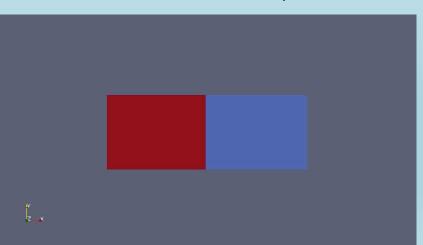
Ē

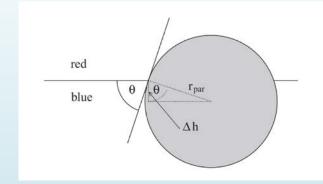
T is dimensionless time unit

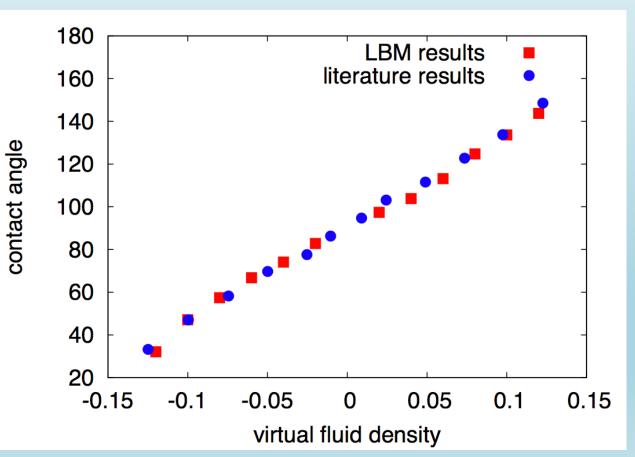

ligament breaks up without thermal fluctuations


ligament breaks up with thermal fluctuations

Thermal length: $L_t = 0.1$

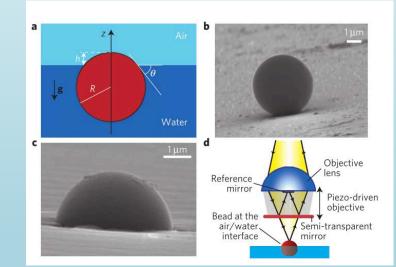

- Domain size: $N_x X N_x X N_x 96X96X256$
- Simulation timesteps: 20,000
- Number of simulations for each data sets: > 200
- Volume measurement: marching tetrahedron algorithm




Wettability of Particle

Particle virtual density 0.02

Particle virtual density 0.1


Future research plan

Ligaments break-up and stochastic lubrication theory

- Modeling multicomponent axisymmetric stochastic lubrication equations (SLE)
- Comparison of SLE-theory: for both multiphase or multicomponent
- Explore on HPC supercomputing resource for statistical purpose

Particle at fluctuating interface

- Brownian diffusion of a partially wetted colloid
- Influence of capillary force to the finite-size particle at fluctuating interface

1. Giuseppe Boniello, et al. Nature material, 2015

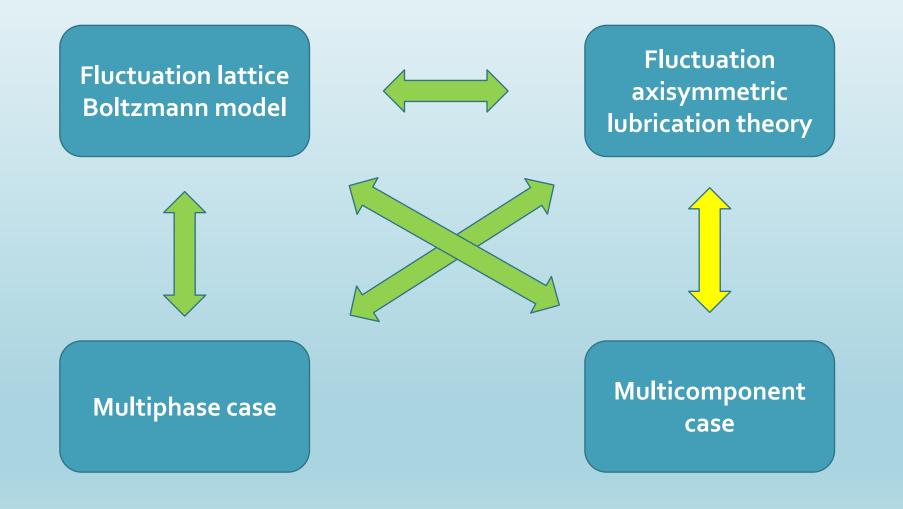
Acknowledgement

Where innovation starts

Funded by the Horizon 2020 Framework Programme of the European Union

Thank you for your attention!

Questions?


Reference

[1] D Belardinelli, M Sbragaglia, L Biferale, M Gross, and F Varnik. Fluctuating multicomponent lattice boltzmann model. *Physical Review E*, 91(2):023313, 2015.

[2] Sudhir Srivastava, JHM ten Thije Boonkkamp, and Federico Toschi. The lattice boltz- mann method for contact line dynamics. 2011.

[3] Sauro Succi. *The lattice Boltzmann equation: for fluid dynamics and beyond*. Oxford university press, 2001.

[4] S Van der Graaf, T Nisisako, C Schroen, RGM Van Der Sman, RM Boom. Lattice Boltzmann simulations of droplet formation in a T-shaped microchannel, Langmuir 22 (9), 4144-4152, 2006 [5] K van Dijke, G Veldhuis, K Schroën, R Boom, Parallelized edge-based droplet generation (EDGE) devices, Lab on a Chip 9 (19), 2824-2830, 2009

\checkmark Introduction and research interests

✓ Current research progress

Ligaments break-up

- The FLBM model can be use to study the fluctuating multicomponent fluid: eg. ligament break-ups
- The droplet distribution with different KbT has been measured
- We have measured the relationship between KbT and variance of droplet size.

Wettability of single particle

- Contacted angles are matched with Jens 2011 for different wettability of the particle

✓ Future plan