Charm loop effects in QCD

Salvatore Calì

HPC-LEAP Mid-term meeting, DESY Zeuthen

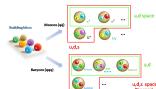
April 18, 2017

"This project has received funding from the European Unions Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 642069"

Table of Contents

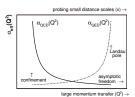
- 1 Introduction
 - Physical context
- 2 Current state of my PhD project
 - Motivation and Strategy
 - lacksquare Charmonium and strong coupling $lpha_{\it qq}$
- 3 Conclusions and Outlook

Quarks and Gluons

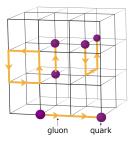

- Theoretical arguments and experimental evidences suggest that hadrons are made of:
 - 1 matter fields: quarks(q), antiquarks(\bar{q}) ($s = \frac{1}{2}$)
 - 2 intermediate fields: gluons(g) (s = 1)
- lack q, ar q and g are never seen in isolation

Quarks and Gluons

- Theoretical arguments and experimental evidences suggest that hadrons are made of:
 - 1 matter fields: quarks(q), antiquarks(\bar{q}) ($s=\frac{1}{2}$)
 - 2 intermediate fields: gluons(g) (s = 1)
- \blacksquare q, \bar{q} and g are never seen in isolation

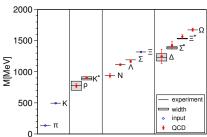

Quarks, Baryons and Mesons

QCD: the theory of strong interactions

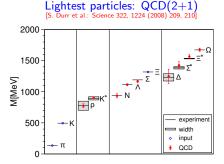

- QCD: theory proposed in 1973 to explain these properties.
- Gauge theory based on the group $SU(3)_c$.
- \blacksquare quarks have color c = 1, 2, 3.
- gluons have color $c = 1, 2, \dots 8$.

Running coupling constant

Main ideas of the Lattice QCD approach

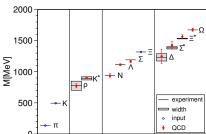

- Continuous space-time is replaced by an Euclidean (N^3N_t) lattice ($x_4 = ix_0$).
- Lattice spacing a.
- Parameters and fields are dimensionless (e.g. $\hat{m} = ma$).
- Fermions lie on the sites of the lattice: $\psi(x) \rightarrow \psi(na)$
- Gluons described by links: $U_{\mu}(x) \rightarrow U_{\mu}(na)$

Motivation


- Most simulations of QCD are carried out only with light quarks (u,d,s).
- QCD($N_f = 2 + 1$) is a really good of approximation of the full theory.

Motivation

- Most simulations of QCD are carried out only with light quarks (u,d,s).
- $QCD(N_f = 2 + 1)$ is a really good of approximation of the full theory.



experiments keep discovering new charm-states → 4th quark?

Motivation

- Most simulations of QCD are carried out only with light quarks (u,d,s).
- QCD($N_f = 2 + 1$) is a really good of approximation of the full theory.

experiments keep discovering new charm-states → 4th quark?

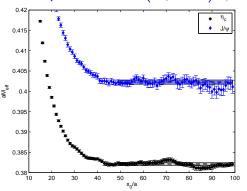
Our main goal is to evaluate the effects of dynamical charm quarks

Motivation and Strategy

Strategy

- We compare QCD $(N_f = 2)$ with $m = m_c$ to QCD $(N_f = 0)$
- Fine lattice spacings are required to control the extrapolation to zero lattice spacing [we use $0.15 < am_c < 0.32$]

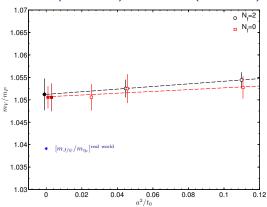
PhD Student: S. Calì Supervisors: Prof. F. Knechtli, Prof. H. Panagopoulos


Strategy

- We compare QCD $(N_f = 2)$ with $m = m_c$ to QCD $(N_f = 0)$
- Fine lattice spacings are required to control the extrapolation to zero lattice spacing [we use $0.15 < am_c < 0.32$]

Simulation Details

- Dynamical Ensembles
 - S_G : Wilson's plaquette gauge action; $\beta \in 5.70, 5.88, 6.00$.
 - $r_0/a = 9.131(56), 11.971(99), 14.27(15).$
 - S_F : twisted mass doublet at maximal twist $\psi = (c_1, c_2)$.
 - Lattice size (LS, LT): (32, 120), (48, 192), (48, 192).
- Quenched Ensembles
 - S_G : Wilson's plaquette gauge action; $\beta \in 6.340, 6.672, 6.900$.
 - $r_0/a = 9.029(80), 14.103(94), 18.65(24).$
 - Lattice size (LS, LT): (32, 120), (48, 192), (64, 192).


Charmonium: example for QCD($N_f = 2$), $\beta = 6.0$

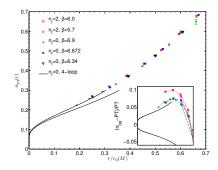
- **E**xtraction of the mass of states made of a q and a \bar{q} (mesons), both with the mass of the charm guark
- Ground states of pseudo-scalar and vector channel.
- Mass is obtained from the plateau average.

Charmonium and strong coupling α_{qq}

Charmonium: $QCD(N_f = 2)$ vs $QCD(N_f = 0)$

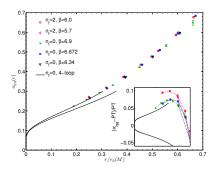
From this comparison dynamical charm effects are NOT resolvable at a precision of 0.2%.

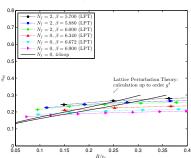
Charmonium and strong coupling α_{qq}


Dynamical charm effects on the strong coupling

■ Strong coupling from the static force $\alpha_{qq}(r) = \frac{1}{C_F} r^2 V'(r)$

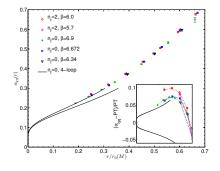
PhD Student: S. Calì Supervisors: Prof. F. Knechtli, Prof. H. Panagopoulos

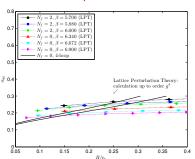

Dynamical charm effects on the strong coupling


Strong coupling from the static force $\alpha_{qq}(r) = \frac{1}{C_F} r^2 V'(r)$ Non-Perturbative Data

Dynamical charm effects on the strong coupling

• Strong coupling from the static force $\alpha_{qq}(r) = \frac{1}{C_F} r^2 V'(r)$ Non-Perturbative Data LPT predictions





Dynamical charm effects on the strong coupling

■ Strong coupling from the static force $\alpha_{qq}(r) = \frac{1}{C_F} r^2 V'(r)$ Non-Perturbative Data

LPT predictions

Significant effect at $\mu = 1/r \approx 1.6$ GeV and above.

Summary

From this study it turns out that the effects of dynamical charm quarks are:

- tiny in charmonium masses
- \blacksquare significant in α_{qq} at large energies

Outlook

- Measure these observables using another lattice spacing with $N_f=2$ \rightarrow smaller errors
- **2** Evaluate these effects on other interesting quantities, like the decay constant f_{D_s}
- In Trying to extract the continuum limit of α_{qq} using Lattice Perturbation Theory predictions.

People involved in this project

My Supervisors

- Prof. Francesco Knechtli (University of Wuppertal)
- Prof. Haralambos Panagopoulos (University of Cyprus)

Other Collaborators

- Dr. Tomasz Korzec (University of Wuppertal)
- Dr. Björn Leder (Humboldt University of Berlin)
- Dr. Graham Moir (University of Cambridge)

Acknowledgments

These simulations require considerable computational resources which have been granted by the Jülich Supercomputing Centre.

Dissemination

Some of these results were shown in two symposia:

- I NIC Symposium, 11-12 February 2016, JSC (speaker: F. Knechtli).
- 2 34th International Symposium on Lattice Field Theory, 24-30 July 2016, Southampton (speaker: T. Korzec)

Progress on these studies will be presented in

35th International Symposium on Lattice Field Theory, 18-24 June 2017, Granada (speaker: S. Calì)

More details can be found in the following paper:

T. Korzec, F. Knechtli, S. Calì, B. Leder, G. Moir. Impact of dynamical charm quarks. In: PoS (LATTICE2016), 126 (7 pages). arXiv: 1612.07634.

Outreach

■ 10th Researchers' night, 30 September 2016, Nicosia.

Connections with other fellows

■ ESR5 (Simone Bacchio) and ESR11 (Aurora Scapellato)

Thank you very much for your attention.