

AXILON AG

Accelerator and X-Ray Instrumentation

for Laboratories, National Facilities and Industry

Timm Waterstradt
APPEC Technology Forum 2017

valuable partner

for the science and industrial community on accelerator and x-ray instrumentation

Product Range:

- Beamlines and Beamline Components for FELs and Synchrotrons
- X-Ray Microscopy and Special Experimental Stations
- Insertion Devices
- Neutron Instrumentation
- Metrology Tools for Laboratory Applications (e.g. EUV Lithography)
- Engineering support/services

History

Background of the AXILON team:

1993/1994	ACCEL Instruments starts as a Management Buy-Out from SIEMENS Interato with approx. 35 employees – focus: Accelerator technology		
1998	Start of the Synchrotron Instrumentation activities in addition to Accelerator and Magnet Technology within ACCEL Instruments		
2007	ACCEL grew as a leader in these special markets to approx. 270 employees ~ € 70 revenue with the business units superconducting magnets, accelerator technologies, synchrotron instrumentation – and: Proton Therapy		
	synchrotron instrumentation: ~15 employees and ~5M€ revenue)		
2007	Varian Medical Systems, Inc., purchases 100% of ACCEL Instruments to extract the Proton Therapy business		
2009	Bruker Inc. buys the research instruments businesses from Varian/ACCEL		

→ Bruker ASC continues the synchrotron instrumentation business

Bruker ASC buys the assets of AIXUV GmbH (EUV source/metrology)

Business has grown to ~30 employees and 8-10M€ revenue

Leading managers and experts of the business left Bruker and started privately owned AXILON AG

2010

2015

Core Competencies

- » Synchrotron instrumentation
- » Accelerator technology
- » Ultra-precision mechanics in vacuum
- » Mechanical engineering, CAD, FEA
- » System engineering and integration
- » Thermo mechanical engineering
- » X-ray optics
- » Ultra-high vacuum technology
- » Cryo-engineering
- » Magnetic systems and in particular Insertion Devices
- » Control systems
- » International project and contract management
- » World-wide Installation and commissioning

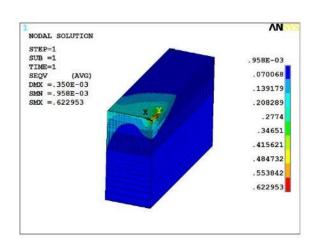
Serving our international customers with solutions in instrumentation and engineering services based on our competencies and well-established expertise

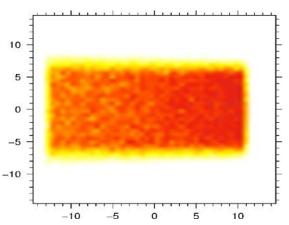
Office and Assembly Site in Cologne /XILON

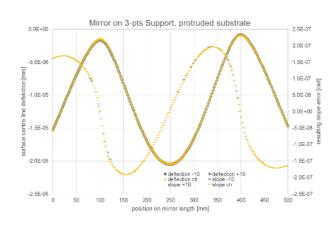
- Technology Park in Cologne (Germany)
- Office space: approx. appr. 300 m²
- Assembly area approx. 250 m²
 - Required infrastructure in place
 - First projects finished (systems assembled, tested, delivered and accepted)

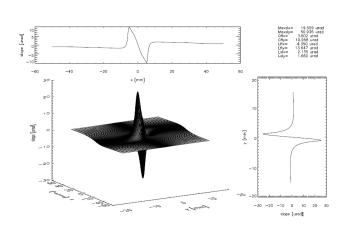
Resources

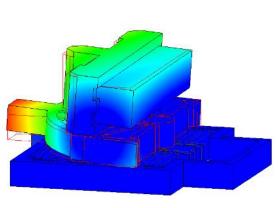
- AXILON team, currently 13 employees
 - 5 physicists
 - 4 project engineers
 - 2 design engineers
 - 1 technician
 - 1 commercial administration
 - Plan to increase to ~16 within one year

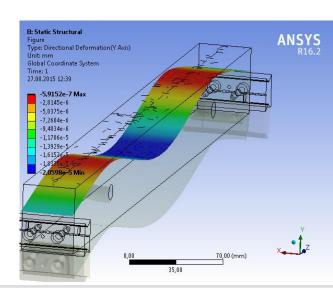


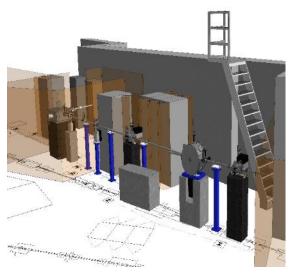

- 2 design engineers (almost working 100% for AXILON)
- 3 additional technicians for support and electrical wiring
- Company for support in programming control system (plc, motion controls)
- Well established network of experienced sub-suppliers for all manufacturing steps
- Co-operations and supply for specific tasks
 - Mechanical metrology, e.g. Zeiss, Moeller-Wedel,
 - Metrology on x-ray optics: BESSY, XFEL, DLS
- → Total available resources are meanwhile > 50% of the old team at Bruker ASC




Modelling





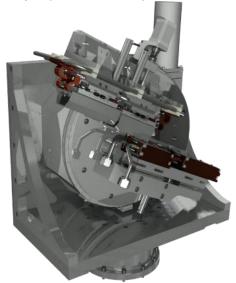


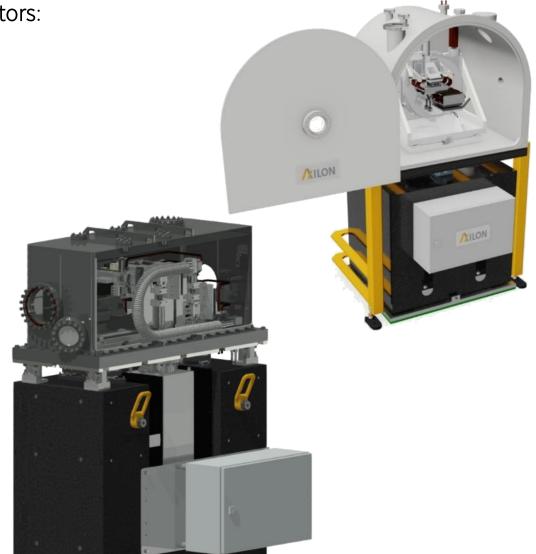
Complete Beamlines

Possible scope:

- Layout, ray-tracing and conceptual design
- FEA on thermal, thermo-mechanical and vibrational issues
- Detailed design
- Realization, assembly and detailed testing
- Installation, commissioning and service worldwide

Components, e.g. Monochromators

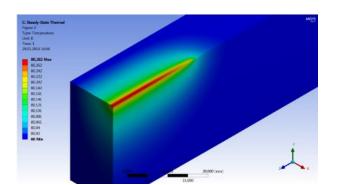


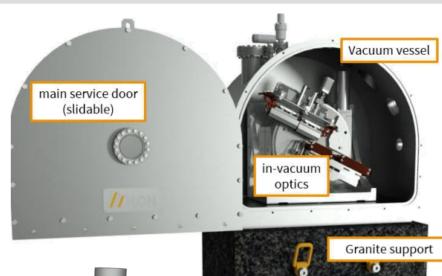

All kinds of different monochromators:

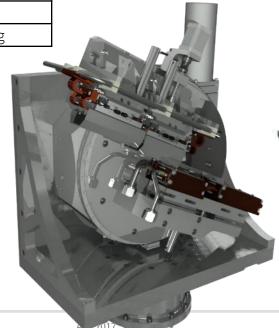
- crystal or multilayer
- water- or cryo-cooled
- single- or multi-bounce
- vertical or horizontal deflecting

Optimized design for:

- highest beam stability
- power load
- or any specific requirement...

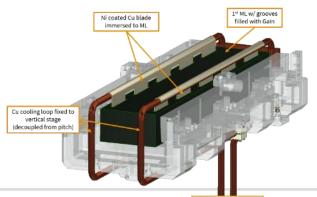


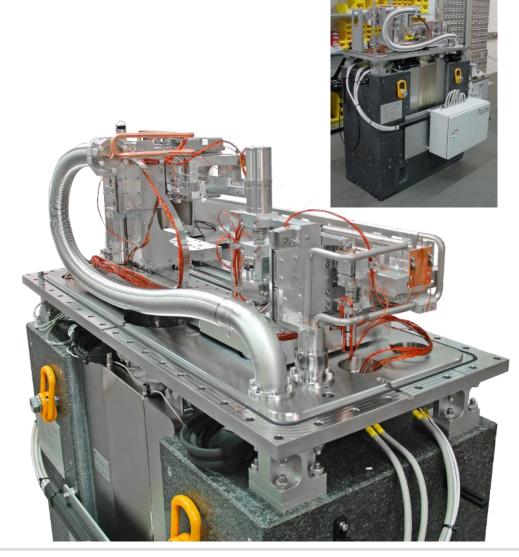

Double Crystal Monochromator for ALS /XILON



Liquid Nitrogen cooled monochromator for ALS (Berkeley, CA (USA)):

parameter	value		
energy range for Si111 crystal pair	5 – 19 keV for Silll crystal		
position	18.53 m from source		
beam size	$2 \times 2 \text{ mm}^2$		
incident beam height	1,400 mm		
beam offset	25 mm upwards		
maximum power on 1st optics	17 W		
maximum power density	4.4 W / mm ²		
cooling method	indirect LN2 cooling		

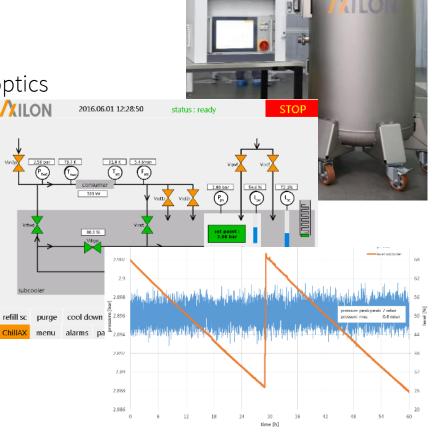

AXILON AG 2017-05-04


Multilayer Monochromator for DLS

Double-multilayer monochromator for Diamond Light Source

parameter	value		
energy range	8 – 18 keV		
Multilayer	Mo/B ₄ C		
position	20.0 m from source		
beam size	40 x 7.5 mm ²		
incident beam height	1,400 mm		
beam offset	18 mm upward		
absorbed power at 1st ML	235 W (no filter)		
absorbed power at 2 nd ML	< 10 W		
power density	0.32kW/mrad² (no filter)		
cooling method	water cooling		
crystal cooling	Gallinstan; indirect, with grooves		

ChillAX – Cryo Cooler

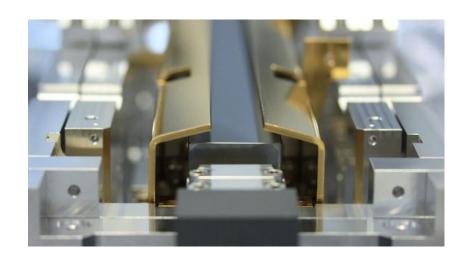

Most optimized and user friendliest liquid nitrogen (LN₂) chiller for cryogenically cooled optics

- superior stability in pressure and temperature
- wide range of cooling power up to 3kW
- fully automated controls
- flexibility, incl. different filling modes

Typically used to cool high heat load x-ray optics

(monochromators, mirrors) – or others ...

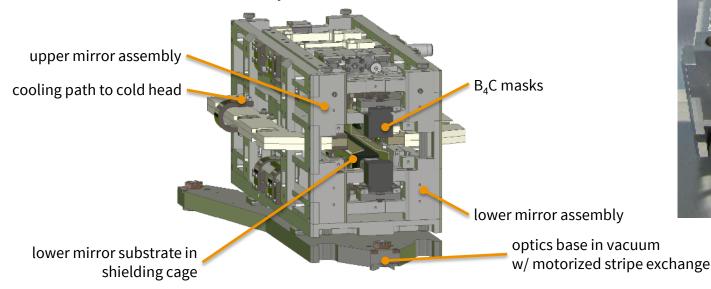
parameter	value
Cooling power	0 to 3,000 Watts
Flow rate	0 to 20 l/min
Cooling loop pressure	1 to 10 bar
Pressure stability	< 1 mbar (rms)
Cooling loop temperature	77 to 100 K

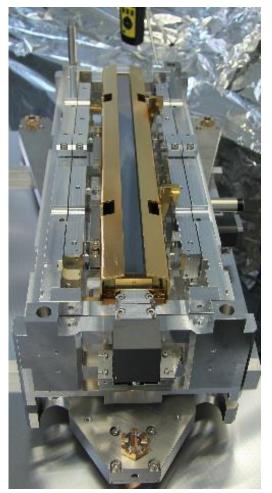


Double Mirror System for MID at XFEL.EU

Special double mirror system for the MID instrument at XFEL.EU:

- Two Si mirrors facing each other allowing for different operational modes of the beamline
- Mirror substrates will be cryo cooled to 125K
- Full system mounted and tested in clean room class ISO5 to fulfill XFEL.EU's particle cleanliness requirements
- High slope error and surface roughness requirements verified in fully mounted state → particular design challenges for substrate support and cooling interface!


Double Mirror System for MID at XFEL.EU

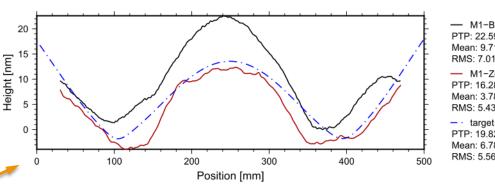


Thermal design

- Substrates allow for being cooled to 125K
- Intensive consideration of thermal aspects, i.e.: Thermal radiation, shielding, conductance, emissivity, ...
- → has been implemented to the compact design

 Balancing target temperature, thermal load and resistivity with cooling power of designated pulsed tube cryo cooler!
- Cold tests under way this summer @ XFEL.EU

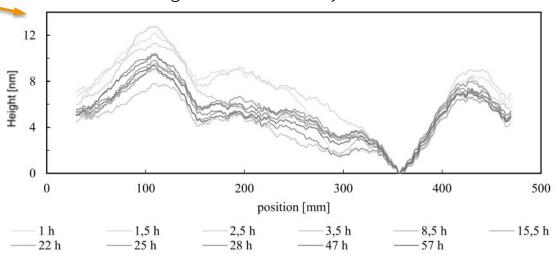
Double Mirror System for MID at EU-XFEL


Optical performance

- Gravitational sag to be compensated by applying the inverse profile by IBF figuring
- Special substrate support strategy at Bessel points in neutral axis eliminates any substrat e deformation from stick/slip at support point
- Mirror optical performance after pre-figuring and mounted in final configuration verified in NOM-measurements at BESSY (F. Siewert)

		results measured		
spec		free ძ	mounted 🛶	
slope error (RMS)	<0.2µrad	0.18µrad	0. 1 2μrad	
height error	n/a	7nm RMS 22.6nm PV	6nm RMS 10.2nm PV	

Pre-figured mirror profile to compensate gravity sag:



PTP: 22.59 nm Mean: 9.717 nm RMS: 7.01 nm

 M1-Zeiss PTP: 16.28 nm Mean: 3.789 nm RMS: 5.43 nm

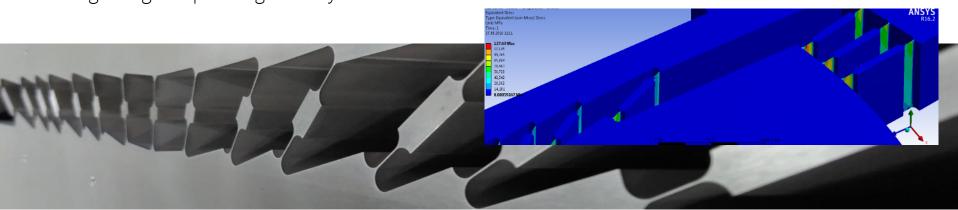
 target profile PTP: 19.82 N/A Mean: 6.787 N/A RMS: 5.56 N/A

Drift investigation with the fully assembled mirror:

Mirror Systems for LCLS at SLAC

Six (6) horizontal offset mirror systems for LCLS:

- Highest precision and pointing stability demands
- Critical UHV cleanliness requirements
- Al wire sealed chambers
- Integration of SLAC bending mechanism
- All ex-vacuum adjustments stages: tight specifications on coupling/parasitic motions

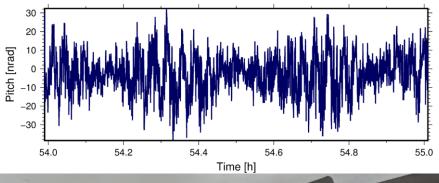


• Entire project realized and installed within tight time schedule (10 months)

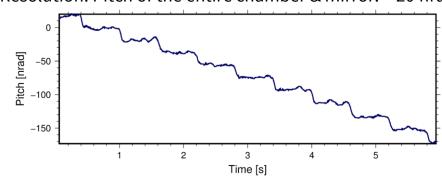
Pitch adjustment stage:

Has to carry full chamber and in vacuum-mechanics, realized by specially designed cart wheel structure leading to highest pointing stability! Validation via ANSYS FEA and measurements ...

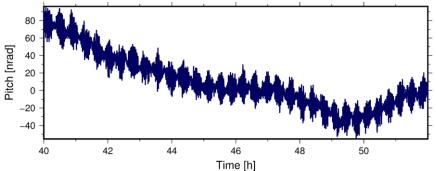
Mirror Systems for LCLS at SLAC



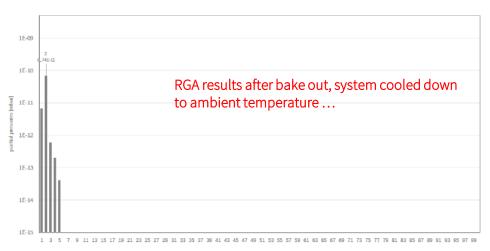
Qualification during Factory Acceptance Tests:


Table 1: Stability Requirement

Required Pointing Stability			
Value (nanoradian RMS)	Timescale		
25 ✓	1 ms - 1 hours		
100 🗸	1 - 12 hours		


Drift: < 25 nrad over 1 hour (measured at AXILON)

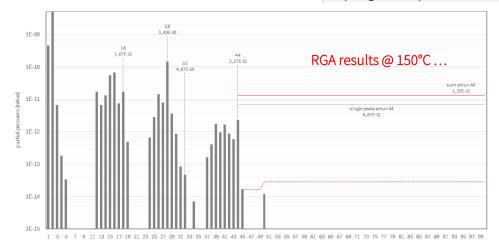
Resolution: Pitch of the entire chamber & mirror: < 20 nrad


Drift: < 40 nrad over 12 hours (measured at AXILON)



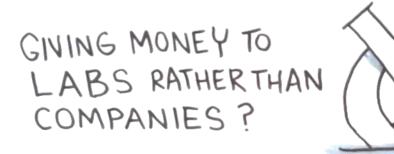
Mirror Systems for LCLS at SLAC

Final vacuum tests of Al wire sealed chambers:



SLAC demands RGA to be taken @ 150°C:

SLAC CRITERIA			RESULTS		
Sum of all masses amu above 44:	<1,3E-11mbar	ok	2,85E-14 mbar		
Any single mass peak above amu 44:	<6,7E-12mbar	ok	1,65E-14 mbar		


Summary

Extensive experience of the AXILON staff forms the strong basis to remain a valuable supplier and partner for instrumentation hardware, but also for engineering support.

- Beamline components, e.g. monochromators, mirror systems
- Cryo Cooler ChillAX
- Customer specific experimental stations, e.g. microscopes
- Other specific components or engineering tasks,
 where we could support with our competencies and experience

In our understanding:

To guarantee the project success, it is of utmost importance to establish a very good cooperation and working relationship!

We are very interested to support new fields and applications with our competencies and experience.

Thank you for your attention

www.axilon.de timm.waterstradt@axilon.de