

Ultimate Low-Light Level Sensor Development

WP2: Current status and future work

Teresa Montaruli, Domenico della Volpe, Andrii Nagai

Tasks of WP2:

- 2.1 Agreement on R&D cooperation between research groups and industry for advancing LLL sensors
- 2.2 Linking to other European initiatives
- 2.3 Fostering the exchange between academia and industry

Working plan for WP2:

1.Define & contact research groups with experience in LLL

2.Establish the measurements/analysis procedure — Today we are here

3.Prepare cooperation agreement

4.Contact the producers for their latest devices

Cooperation agreement between research institutes & industry:

- Form a collaboration between available platforms to:
 - Characterize LLL sensors
 - Characterize platforms and their systematic errors for relevant various measurements
 - Standardize measurements & analysis procedures
 - Minimize duplication efforts in characterizing sensors and establish precision on measured quantities
 - Publication of results
- Formulate and Agreement with companies for providing test products and

for the publication of the results

Define & contact groups with experience in LLL

Name	Organisation	Response	
Giovanni Bonanno	Catania Astrophysical Observatory	Positive	
Hans-Christian Schultz-Coulon	University of Heidelberg	Positive	
Hiroyasu Tajima	Nagoya University	Positive	
Iouri Musienko	CERN	None, so far	
Adam Nepomuk Otte	Georgia Institute of Technology	Not Available as lacking of resources/people	
Alexander Hahn / David Fink	Max Planck Institute for Physics	Positive	

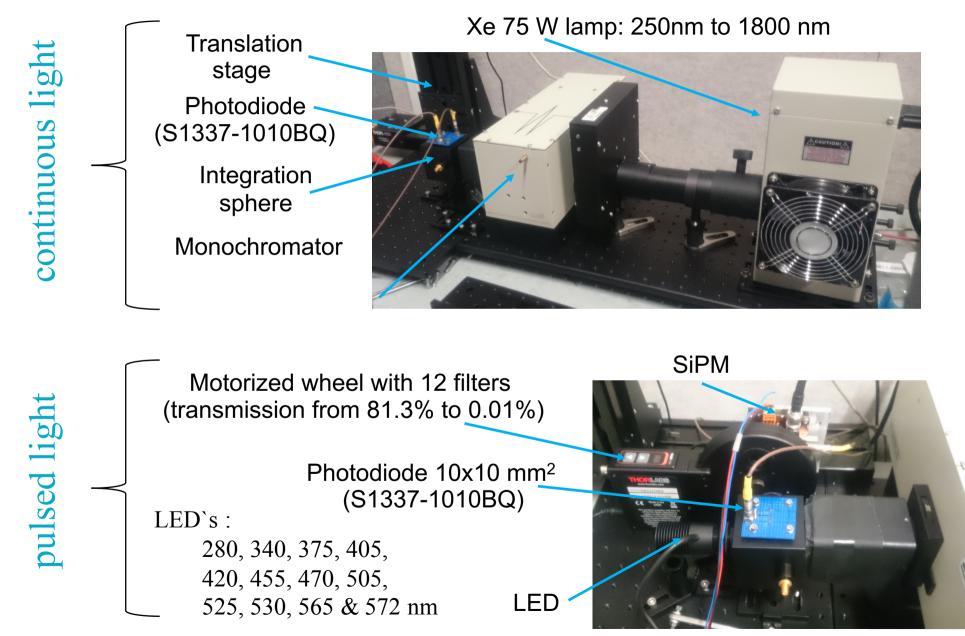
Establish the measurements/analysis procedure

Collect information about experimental set-ups

		IdeaSquare / UNIGE	Catania Astrophysical Observatory	Nagoya University	Max Planck Institute for Physics	
Light sources	Pulsed	LED	280, 340, 375, 405, 420, 455, 470, 505, 525, 530, 565 & 572 nm	285, 315, 341, 385, 405, 430, 450, 465, 496, 505, 525, 570, 591, 635, 660, 680, 780 & 851 nm	377, 402, 465 & 635 nm	256, 281, 309, 342, 381, 457, 500, 573 & 598 nm
		laser	375 nm			
	Continuous		Xe lamp: 250 – 1200 nm	Xe lamp: 250 – 1000 nm		Tungsten and hydrogen lamp 200 – 800 nm
Temperature range:		~ 23 ^{0}C	0 °C to 25 °C	Climatic chamber	-40 °C to 100 °C	

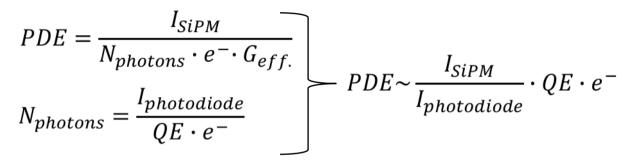
SEN

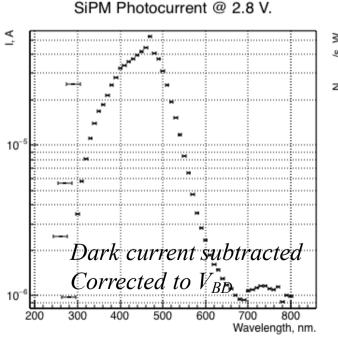
Establish the measurements/analysis procedure

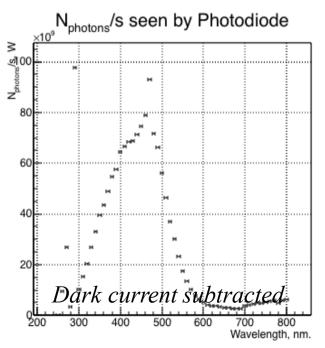


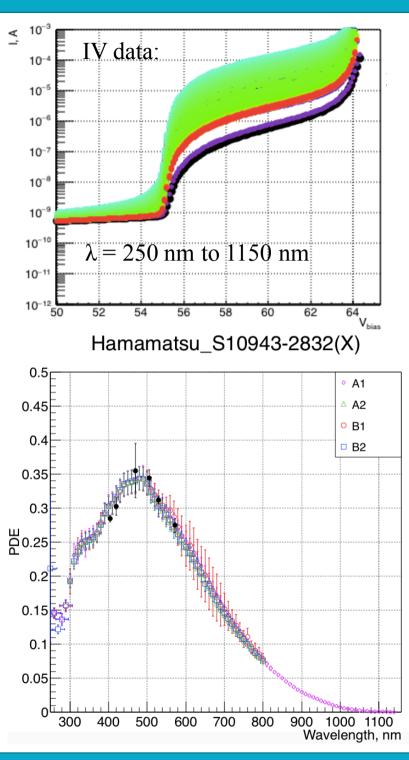
- Qualify the the systematic errors of each set-up
 - Measure the same SiPM:
 - 1. Monolitic Hexagonal 6 mm side Hamamatsu S10943-2832(X) to establish errors.
 - 2. other devices??? Smaller?
 - Parameters agreed to be measured:
 - 1. V_{BD} at a given temperature
 - 2. PDE vs. Overvoltage
 - 3. PDE vs. wavelength
 - 4. Optical crosstalk vs. Overvoltage
 - 5. PDE vs. Optical crosstalk
 - 6. DCR vs. Overvoltage

Experimental setup at Ideasquare/Unige

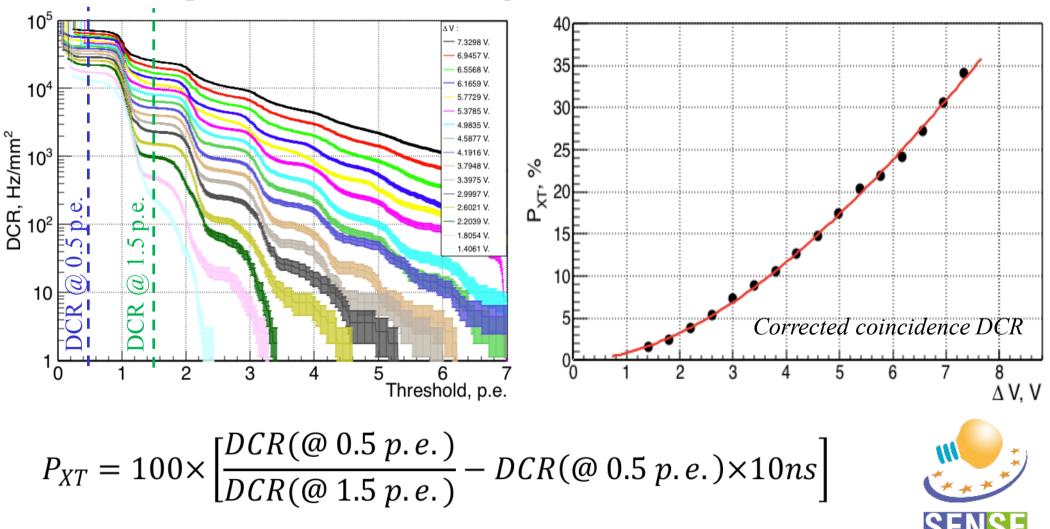





20×10⁶ Measurements of Hamamatsu Gain (SiPM + Amplifier) S10943-2832(X) 15 •V_{BD} @ 24 ⁰C 10 $V_{BD} = 54.65$ V 54 56 58 60 62 V_{bias}, V •PDE vs. Overvoltage Hamamatsu S10943-2832(X), $T = 24 \ ^{0}C$ 0.6 Poisson distribution: 405 nm $P(n_{p.e.}) = \frac{(k)^{n_{p.e.}}}{n_{p.e.}!} \cdot e^{k}$ Probability to detect 0 p.e. : 20 nm 0.5 05 nm 0.4 572 nm $P(0) = e^{-k} = \frac{N(0)}{N(total)}$ R 0.3 Average number of detected photons: 0.2 $k = -\ln(P(0)_{LED}) + \ln(P(0)_{dark})$ 0.1 $\frac{k}{N_{photons}} = \frac{k \times QE \times e^{-} \times R}{I_{Photodiod}}$ PDE =O 2 5 1 з 6 7 4 ΔV, V

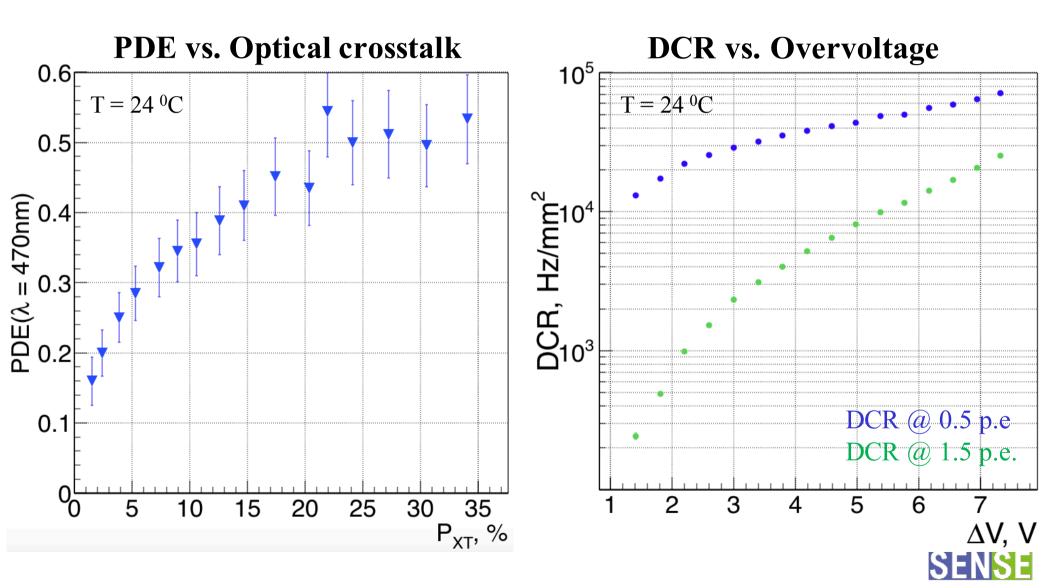

Measurements of Hamamatsu S10943-2832(X)

• PDE vs. wavelength (a) $\Delta V = 2.8 V$



Zeuthen

Measurements of Hamamatsu S10943-2832(X)



• Optical crosstalk vs. $\Delta V @ T = 24 \ ^{0}C$

Measurements of Hamamatsu S10943-2832(X)

Module on light sensors for lyceum Should be presented in: - College Rousseau, Geneva 14th of March Introduce: - Cosmic rays Détecteurs de lumière Low light detectors 60 Scintillateur plastique Électronique de lecture First results: General view: Plastic scintillator SiPM signals in coincidence: SiPM`s Oscilloscope V_{bias} Time difference between two events: P1:dtrig(C1) P2[·]pkpk(C1 P3:pkpk(C2) P4:dtrig(C1) P5:delay(C1) P6 mea Measure 489 1903380 ms 1.5 mV 15 m\ value 1.6654 mV 1 5381 m\ mean 0.0 n 417 u\ 312 u\ may 21 7444113760 9 10 8 m\ 13.0 m 662.5 uV 838.8 u\ sde 525.0 ms num 1.785e+3 1.785e+3 1.785e+3 status histo