

ARD-ST3 Workshop, Zeuthen 2017

shaukat.khan@tu-dortmund.de

S. Khan, B. Büsing, N. M. Lockmann, C. Mai, A. Meyer auf der Heide, B. Riemann, B. Sawadski, M. Suski Zentrum für Synchrotronstrahlung (DELTA), TU Dortmund, 44227 Dortmund, Germany

Introduction

Seeding is the interaction of electrons with an external radiation pulse to produce a particular radiation output. **Free-electron laser** (FEL): radiation with improved longitudinal coherence [1] laser modulator **Storage ring**: short pulses of synchrotron radiation [2]

Aspects of FEL seeding can be investigated at storage rings

- advantages: very stable beam, high repetition rate, additional beam time

- drawbacks: no FEL gain, no study of space charge, no electron chirp

Example: CHG (coherent harmonic generation) \leftrightarrow **HGHG** (high-gain harmonic generation) laser-induced energy modulation, microbunching, coherent emission of harmonics [3,4]

The Short-Pulse Facility at DELTA

DELTA: 1.5 GeV synchrotron light source at TU Dortmund **Short-pulse facility:** constructed in 2011 [5,6]

- Ti:sapphire laser pulses guided through beamline BL 3
- undulator U250: modulator + chicane + radiator
- diagnostics beamline BL 4: streak camera, iCCD [7] ...
- soft-X-ray beamline BL 5: photoelectron spectrometer
- THz beamline BL 5a: FTIR spectrometers ... [8,9]

Table 1: Parameters of the DELTA short-pulse facility	
electron storage ring	
beam energy	1.5 GeV
circumference	115.2 m
beam current (single-/multibunch)	20/130 mA
horizontal emittance	15 nm rad
relative energy spread	0.0007
typ. bunch length (FWHM)	100 ps
titanium:sapphire laser system	
wavelength	800 nm
pulse energy at 800/400 nm	8.0/2.8 mJ
repetition rate	1 kHz
min. pulse duration (FWHM)	40 fs
undulators and chicane	
modulator/radiator period length	250 mm
number of modulator/radiator periods	7
undulator periods used as chicane	3
max. modulator/radiator K parameter	10.5
max. chicane r_{56} value	130 µm

CHG Spectra

Example: seeding with 800 nm, study 2nd, 3rd, 4th harmonic, variation of

- chicane strength r_{56}
- laser compressor setting (chirp)

Results at large r56 values: overbunching, double-peak structure [10]

- negative-chirp pulse (-55 fs in laser lab) has little chirp at modulator (compensated by lenses and vacuum window)
- interference fringes for unchirped pulse
- interference vanishes for large chirp
- linear + nonlinear chirp \rightarrow asymmetric spectra

Seeding with Double Pulses

see also FERMI [11]

Results for (a): [14] interference between

- two laser pulses (measures delay)
- two CHG pulses (for small delay)

- two THz pulses (for large delay) **Results for (b):** [15] temporal overlap - center of THz interferogram

- sensitivity to small delay ($\Delta t_2 = r_{56}/2$)
- drop of beam lifetime (reduced RF power)

800 nm density modulation (blue) + 400 nm energy modulation (red, green)

[1] P. Schmüser et al., *Ultraviolet and Soft-X-Ray FELs* (Springer 2008). [2] S. Khan, in *Synchrotron Light Sources and FELs* (Springer 2015) [3] R. Coisson, F.D. Martini, in *Phys. of Quant. El.* (A.-Wesley, 1982). [4] L.-H. Yu, *Phys. Rev.* A 44, 5178 (1991). [5] H. Huck et al., *FEL 2011*, Shanghai/China, 5. [6] S. Khan et al., Sync. Rad. News 26(3), 25 (2013). [7] Andor iStar DH334T 18U-E3. [8] P. Ungelenk et al., IPAC 2013, Shanghai/China, 94. [9] C. Mai et al., *IPAC 2016*, Busan/Korea, 105. [10] M. Huck et al., *IPAC 2014*, Dresden, Germany, 1848. [11] D. Gauthier et al., *Phys. Rev. Lett.* 115, 114801 (2015). [12] G. Stupakov, Phys. Rev. Lett. 102, 074801 (2009). [13] S. Hilbrich et al. *FEL 2015*, Daejeon/Korea, 363. [14] S. Khan et al., IPAC 2017, Copenhagen, Denmark, 2578. [15] A. Meyer auf der Heide et al., IPAC 2017, Copenhagen/DK, 2582.

* Work supported by BMBF (05K15PEA,05K15PEB), MERCUR (Pr-2014-0047), DFG (212/236-1 FUGG), Land NRW. The continuous support from colleagues at DELTA and elsewhere (DESY, HZB, KIT ...) is gratefully acknowledged.