

L bERLinPro

Facility Reports: HZB

Michael Abo-Bakr et al.

Content:

- BESSY VSR
- bERLinPro
- EMIL
- MLS

HZB facilities 16 July 2017

BESSY II – a third Generation Light Source

	BESSY II, Berlin Adlersho	BESSY II Standard Beam Parameters	
	bERLinPr	Energy	1.7 GeV
	EMIL BESSY II	Circumference	240 m
		Horizontal emittance	5 nm rad
		max. beam current	300 mA
		RF frequency	500 MHz
	Standard BESSY II Fill Pattern:	max. RF voltage	2 MV
5mA	"single bunch" slicing	Bunch length	15 ps
	PPRE	low-α	2 ps
1mA	multi bunch	Mom. Comp. factor low-α	7.5×10^{-4} 3.5×10^{-5}
;	¢1 #400		

Michael Abo-Bakr et al. - HZB facilities - ARD ST3 - DESY Zeuthen - 19 Jul 2017

BESSY VSR —"The Variable pulse length Synchrotron Radiation source"

Idea: short & long SyRad light pulses from a SR Target: intense, short x-rays with high rep rate

- ~ 1 ps zero-current bunch length (equilibrium)
- 1.25 MHz // 250 MHz // 500 MHz
- no / minor changes for long pulse users
 300 mA, top-up, access to user hall (radiation safety)

Michael Abo-Bakr et al. – HZB facilities – ARD ST3 – DESY Zeuthen – 19 Jul 2017

BESSY VSR – CSR driven Instability Threshold

Turbulent bunch lengthening / microwave (CSR) instability

→ longitudinal instability, limiting the current in short bunches

bunch shortening: increase U' preferred

 $\sigma = \text{const.} \rightarrow I_{\text{th}} \sim \alpha$

BESSY VSR

BESSY VSR – a fill Pattern serving many different Users

high current high current slicing 10 short bunch long bunch bunches 3×5 mA. 3.7 ps 0.8 mA, 1.7 ps 10 mA, 27 ps 75×1.65 mA, 15 ps 75×1.65 mA, 15 ps 75×0.18 mA, 1.1 ps 75 × 0.18 mA, 1.1 ps 10⁻¹ 10⁻² 50 250 100 150 200 300 350 400 bucket number chopper gap chopper gap Standard BESSY II Fill Pattern:

various user tailored bunch types with

length variation ~ x 25

bunch current / mA

- charge variation ~ x 50
- charge density variation ~ x 10

BESSY VSR

BESSY VSR – Challenges in Physics & Technology

Many challenges on the road to BESSY VSR

strong SC harmonic cavities (E~20 MV/m) operated in a storage ring with high average current (300 mA)

- beam dynamics
- machine integration
- beam separation
- bunch-resolved diagnostics
- TopUp injection
- ..
- ... a new, exciting, funded project

• BESSY VSR

BESSY VSR – Project Status & Time Line

- 200? first ideas
- 2011 beating scheme
- 2015 TDS
- 2016 related R&D projects
- 2017 fully funded!
- 2017 first prototype cavities in house
- 2018 test of first critical components in ring
- 2020 first test module in ring
- 202? final installation / operation

BESSY VSR

BESSY VSR – Project Status & Time Line

- 200? first ideas
- 2011 beating scheme
- 2015 TDS
- 2016 related R&D projects
- 2017 fully funded!
- 2017 first prototype cavities in house
- 2018 test of first critical components in ring
- 2020 first test module in ring
- 202? final installation / operation

bERLinPro: an ERL R&D facility bERLinPro: the Berlin Energy Recovery Linac Project Recirculation path Beam dump • 600 kW **Splitter section** · Extracts decelerated beam Main LINAC 3 × 7-cell SRF cavities • $\Delta E = 44 \text{ MeV}$ **Merger section** Transfers injected beam onto LINAC **SRF** Photoinjector **bERLinPro Parameter** • $\Delta E = 2 \text{ MeV}$ axis **Booster module** Max. beam energy (MeV) 50 3 × 2-cell SRF cavities Max. beam current (mA) 100 (77 pC / bunch) • $\Delta E = 4 \text{ MeV}$ Frequency (GHz) 1.3 42 Mio€ (including building), Normalized emittance (mm mrad) < 1.0 fully funded, Bunch length (ps) 2 ps (~100 fs) project start 2011 Beam losses < 10⁻⁵ @ 100 mA

UbERLinPro

bERLinPro: an ERL R&D facility

Stage 1 – "GunLab": high-brightness beam from an SRF Injector

L bERLinPro

Michael Abo-Bakr et al. - HZB facilities - ARD ST3 - DESY Zeuthen - 19 Jul 2017

Stage 2 – "Banana": medium-power beam transport at low energy

Gun1 with 2 adjustable TTF3 couplers; power limited to ~ 20 kW

- (Re-) Commissioning of SRF Gun & Booster + warm machine
- Beam preservation in complex beam transport (merger)
- Beam-loading issues
- Machine-protection issues ... Beam diagnostics

milestones stage 2: bERLinPro "Banana"				
start of cryo commissioning	03/2018			
"Banana" completely installed	04/2018			
I _{avg} > 1 mA trough "Banana"	01/2019			

Splitter section

High power

dump

L bERLinPro

bERLinPro: a staged approach

Stage 3 – recirculation: medium power, high energy transport of a high-brightness beam

- LINAC performance
- Recovery efficiency
- Bunch compression
- Beam quality preservation

time line stage 3 & 4: 2020 ... 2022

Stage 4 – complete machine: high-power recirculation

- "Putting it all together"
- High-current operation of gun (Gun2)

- Beam loss, reliable transport to dump
- Machine protection, reliability

L bERLinPro

EMIL – A novel research platform for energy materials

EMIL: the <u>Energy Materials</u> In-situ Laboratory at BESSY II

state-of-the art surface and interface analysis laboratory: "in-system", "in-situ" and "in-operando" X-ray analysis (PES, PEEM, HAXPES, XES, XRF, XRD, ambient-pressure-HAXPES) of materials and devices under realistic sample environments

focus on energy conversion, storage & efficiency

two ID's \rightarrow 5 experimental end-stations:

 3 with simultaneous access to soft & hard X-rays (80 eV – 10 keV)

EMIL – A novel research platform for energy materials

EMIL: the <u>Energy Materials In-situ</u> <u>Laboratory at BESSY II</u>

state-of-the art surface and interface analysis laboratory: "in-system", "in-situ" and "in-operando" X-ray analysis (PES, PEEM, HAXPES, XES, XRF, XRD, ambient-pressure-HAXPES) of materials and devices under realistic sample environments

focus on energy conversion, storage & efficiency

two ID's \rightarrow 5 experimental end-stations:

- 3 with simultaneous access to soft & hard X-rays (80 eV – 10 keV)
- SISSY-Lab comprises a variety of deposition & characterization facilities in one integrated UHV system.

MLS: the METROLOGY LIGHT SOURCE

facility of Physikalisch-Technische Bundesanstalt (PTB) designed and operated by HZB photons / s / 1% bandwidth

Pole

Pole

- user facility, low- α , low- ϵ •
- highly automated operation, ramped •
- 2017: new RF cavity (HOM damped EU) •
- ideal test environment for accelerator physics • e.g. TRIBs: transverse resonance island buckets (BESSY-VSR) e.g. negative low- α
- **R&D** project: Robinson Wiggler ٠

10¹⁴

10¹³

10⁻² 10⁻¹

	parameters		
	Energy	50 630 MeV	
	Circumference	48 m	
	Horizontal emittance	100 nm rad	
	Beam current	200 mA	
	RF frequency	500 MHz	
	max. RF voltage	0.5 MV	
	Bunch length low-α	20 ps 1 ps	
	Mom. Comp. Iow-α	$(-3 \dots 7) \times 10^{-2}$ 1.3×10^{-4}	

10³ 10⁴

Ephoton / eV

ш

2 x/mm

10

1

 10^{2}

