$\because B E S S Y$ VSR

1(bERLinPro

- EMIL

Facility Reports: HZB

Michael Abo-Bakr et al.

Content:

- BESSY VSR
- bERLinPro
- EMIL
- MLS

BESSY II - a third Generation Light Source

BESSY VSR -"The Variable pulse length Synchrotron Radiation source"

Idea: short \& long SyRad light pulses from a SR Target: intense, short x-rays with high rep rate

- ~ 1 ps zero-current bunch length (equilibrium)
- 1.25 MHz // 250 MHz // 500 MHz
- no / minor changes for long pulse users 300 mA , top-up, access to user hall (radiation safety)
bunchlength $\sim \sqrt{\frac{\alpha}{U^{\prime}}}$

$$
\sigma_{0} \sim \sqrt{\frac{\alpha}{U^{\prime}}}
$$

Turbulent bunch lengthening / microwave (CSR) instability
\rightarrow longitudinal instability, limiting the current in short bunches
bunch shortening:
increase U' preferred

$$
\sigma=\text { const. } \rightarrow I_{\mathrm{th}} \sim \alpha
$$

BESSY VSR - a fill Pattern serving many different Users

BESSY VSR - Challenges in Physics \& Technology

Many challenges on the road to BESSY VSR
strong SC harmonic cavities (E~20 MV/m) operated in a storage ring with high average current ($\mathbf{3 0 0} \mathrm{mA}$)
two 1.5 GHz cavities @ E_{0} ~ $20 \mathrm{MV} / \mathrm{m}$

+ two 1.75 GHz cavities @ $\mathrm{E}_{0} \sim 17 \mathrm{MV} / \mathrm{m}$

- beam dynamics
- machine integration
- beam separation
- bunch-resolved diagnostics
- TopUp injection
... a new, exciting, funded project

- 200? - first ideas
- 2011 - beating scheme
- 2015 - TDS
- 2016 - related R\&D projects
- 2017-fully funded!
- 2017 - first prototype cavities in house
- 2018 - test of first critical components in ring
- 2020 - first test module in ring
- 202? - final installation / operation
- 200? - first ideas
- 2011 - beating scheme
- 2015 - TDS
- 2016 - related R\&D projects
- 2017-fully funded!
- 2017 - first prototype cavities in house
- 2018 - test of first critical components in ring
- 2020 - first test module in ring
- 202? - final installation / operation

bERLinPro: an ERL R\&D facility

bERLinPro: the Berlin Energy Recovery Linac Project

SRF Photoinjector

- $\Delta E=2 \mathrm{MeV}$

Recirculation path

Booster module

- 3×2-cell SRF cavities
- $\Delta E=4 \mathrm{MeV}$

42 Mio€ (including building),
fully funded, project start 2011

Merger section

- Transfers injected beam onto LINAC axis

Main LINAC

- 3×7-cell SRF cavities
- $\Delta E=44 \mathrm{MeV}$

Beam dump - 600 kW

Splitter section

- Extracts decelerated beam

Parameter	bERLinPro
Max. beam energy (MeV)	50
Max. beam current (mA)	$100(77 \mathrm{pC} /$ bunch $)$
Frequency (GHz)	1.3
Normalized emittance (mm mrad)	<1.0
Bunch length (ps)	$2 \mathrm{ps}(\sim 100 \mathrm{fs})$
Beam losses	$<10^{-5} @ 100 \mathrm{~mA}$

bERLinPro: an ERL R\&D facility

Stage 1 - "GunLab": high-brightness beam from an SRF Injector

- Injector cavity performance: E, stability, ...
- Cathode performance: Q_{E}, lifetime, ...
- Intrinsic beam limits (emittance, energy spread, bunch length ...)
- Dark current / unwanted beam

GunLab RF comissioning running / operation starting very soon!

- compact cold string (gun cavity with metal /
semi-cond. photo-cathode, solenoid, HOM loads, coupler ports)
- diagnostics: 6D phase-space characterization
- full charge @ low average current ($5 \mu \mathrm{~A}$, radiation limit)

bERLinPro: a staged approach

Stage 2 - "Banana": medium-power beam transport at low energy

Gun1 with 2 adjustable TTF3 couplers; power limited to ~ 20 kW

- (Re-) Commissioning of SRF Gun \& Booster + warm machine
- Beam preservation in complex beam transport (merger)
- Beam-loading issues
- Machine-protection issues ... Beam diagnostics

Merger section
milestones stage 2: bERLinPro "Banana"

start of cryo commissioning	$03 / 2018$
"Banana" completely installed	$04 / 2018$
$\mathrm{I}_{\text {avg }}>1 \mathrm{~mA}$ trough "Banana"	$01 / 2019$

bERLinPro: a staged approach

diagnostics \& vacuum racks technical infrastructure hall (June 2017)

Stage 3 - recirculation: medium power, high energy transport of a high-brightness beam

- LINAC performance
- Recovery efficiency
- Bunch compression
- Beam quality preservation

time line stage 3 \& 4: 2020 ... 2022

Stage 4 - complete machine: high-power recirculation

- "Putting it all together"
- High-current operation of gun (Gun2)
- Beam loss, reliable transport to dump
- Machine protection, reliability

EMIL - A novel research platform for energy materials

EMIL: the Energy Materials In-situ Laboratory at BESSY II

state-of-the art surface and interface analysis laboratory: "in-system", "in-situ" and "in-operando" X-ray analysis (PES, PEEM, HAXPES, XES, XRF, XRD, ambient-pressure-HAXPES) of materials and devices under realistic sample environments
focus on energy conversion, storage \& efficiency
two ID's $\rightarrow 5$ experimental end-stations:

- 3 with simultaneous access to soft \& hard X-rays ($80 \mathrm{eV}-10 \mathrm{keV}$)

PINK: nonresonant XRF

EMIL - A novel research platform for energy materials

EMIL: the Energy Materials In-situ

 Laboratory at BESSY IIstate-of-the art surface and interface analysis laboratory: "in-system", "in-situ" and "in-operando" X-ray analysis (PES, PEEM, HAXPES, XES, XRF, XRD, ambient-pressure-HAXPES) of materials and devices under realistic sample environments
focus on energy conversion, storage \& efficiency
two ID's $\rightarrow 5$ experimental end-stations:

- 3 with simultaneous access to soft \& hard X-rays ($80 \mathrm{eV}-10 \mathrm{keV}$)
- SISSY-Lab comprises a variety of deposition \& characterization facilities in one integrated UHV system.

MLS: the METROLOGY LIGHT SOURCE

Thank you for your attention!

