

THz Streaking with Split Ring Resonator at FLUTE

M. Yan (KIT) for the collaboration

Presenter: E. Bründermann (KIT)

Karlsruhe Institute of Technology (KIT), Paul Scherrer Institute (PSI), University of Bern

Minjie Yan, Institute for Beam Physics and Technology (IBPT), KIT

Collaboration: KIT, PSI, University Bern

Andreas Breitenstein, Erik Bründermann, Stefan Funkner, Anke-Susanne Müller, Michael J. Nasse, Gudrun Niehues, Robert Ruprecht, Manuel Schedler, Thiemo Schmelzer, Markus Schwarz, Marcel Schuh, Minjie Yan

PAUL SCHERRER INSTITUT

Micha Dehler, Eugenio Ferrari, Franziska Frei, Rasmus Ischebeck, Matthias Moser, Volker Schlott

17-07-28

2

JNIVERSITÄT Bern Thomas Feurer, Mozhgan Hayati, Zoltan Ollmann, Roxana Tarkeshian

... and additional support by the technical teams

Acceleration vs. deflection vs. streaking

3 17-07-28

Principle of electron bunch streaking

• At zero-crossing of streak field: $y \propto z$

17-07-28

Streaking strength: $S = \sqrt{\beta(s_0)\beta(s_1)} \sin(\Delta \Psi_{s_0 \to s_1}) \frac{eV}{E} \frac{2\pi f}{c}$

Resolution:
$$\frac{\sigma_{y0}}{S} = \frac{\sqrt{\epsilon_y}}{\sqrt{\beta(s_0)}} \frac{1}{\sin(\Delta \Psi_{s_0 \to s_1})} \frac{E}{eV} \frac{c}{2\pi f}$$

Principle of SRR diagnostics

"Split ring resonator based THz-driven electron streak camera featuring femtosecond resolution"

J. Fabiańska, G. Kassier, T. Feurer, Sci. Rep. 4, 5645 (2014)

- THz-range => high frequency f
 - LiNbO₃ crystal => 35 fs pulse at 800 nm (FLUTE laser) converted to THz pulse
- Field enhancement in SRR gap => large "kick" voltage V
 - Enhancement factor ~100 (at 0.3 THz, $\lambda = 1$ mm, (10 µm)³ gap volume)

Image adapted from: J. Fabiańska, G. Kassier, T. Feurer. Sci. Rep. 4, 5645 (2014)

FLUTE (Ferninfrarot Linac- und Test-Experiment)

Split ring resonator experiment at FLUTE

Institut für Beschleunigerphysik und

7 28-Jul-17

Simulation procedure & estimated values

Institut für Beschleunic

Simulation results for various structures

Beam "kick" normalized to SRR (typical ranges 1 to 10 keV / c)

17-07-28 M. Yan et al. (presenter: E. Bründermann) | KIT | IBPT | Venue: DESY Zeuthen

10

11 17-07-28

M. Yan et al. (presenter: E. Bründermann) | KIT | IBPT | Venue: DESY Zeuthen

FLUTE Institut für Beschleunigerphysik und Technologie

Measurement: electrons incident on camera

Temporal resolution

$$\frac{\sigma_{y0}}{cS} = \frac{\sqrt{\varepsilon_y}}{\sqrt{\beta(s_0)}} \frac{1}{\sin(\Delta \Psi_{s_0 \to s_1})} \frac{E}{eV} \frac{1}{2\pi f}$$

use FLUTE parameters

	SRR deflector	Unit
Bunch charge	50	fC
E	7	MeV
Norm. ε_y^*	3	nm
V	10	kV
f	500	GHz
$\sqrt{\beta(s_0)}$	1	\sqrt{m}

$$\frac{\sigma_{y0}}{cS} \sim 3 \text{ fs}$$

- Better $\frac{\sigma_{y0}}{c^{S}}$
- with different SRR design
- \rightarrow larger field enhancement
- for SRR array
- \rightarrow more "kick"

- for high energy e-beams
 - smaller emittance
 - larger beta-function $\sqrt{\beta(s_0)}$ is ok
 - \rightarrow e-beam still fits through SRR gap

Tasks status KIT

FLUTE: accelerator

THz diagnostics

THz measurements broadband (preliminary) span: $\Delta v = 0 \dots 20$ THz risetime: $\tau \sim 18$ fs

Tasks status University Bern

15 17-07-28

Tasks status PSI

Vacuum chamber

- Design at PSI
- Manufacturing at PSI
- Installation at KIT

16 17-07-28

Summary

Preparation for the 1st experiment at FLUTE in progress

- Vacuum chamber installed
- THz pulse generation & beam profile measured
- For 50 fC: potential time resolution $\frac{\sigma_{y0}}{cS} \sim 3$ fs
- Proof-of-principle experiment at FLUTE for 7 MeV
- Support by many of the SRR collaboration ...

PAUL SCHERRER INSTITUT

ruhe Institute of Technoloc