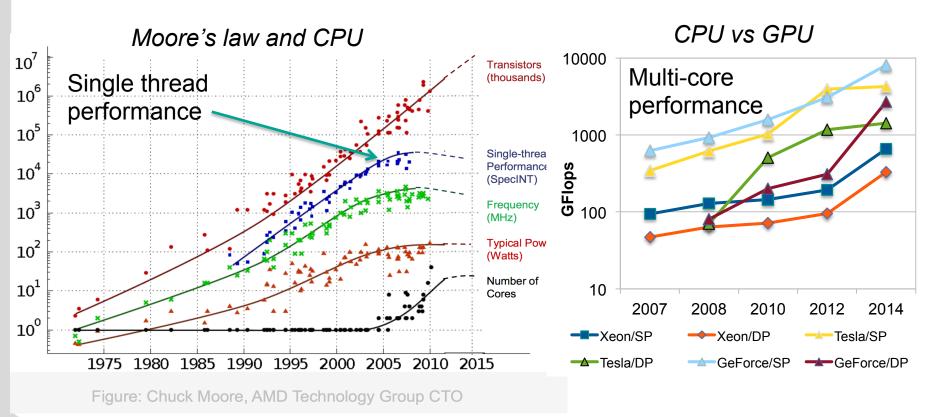


ARD topical workshop on "ps - fs Electron and Photon Beams"

Online processing with GPUs in data acquisition systems for improved data quality and control

Andreas Kopmann

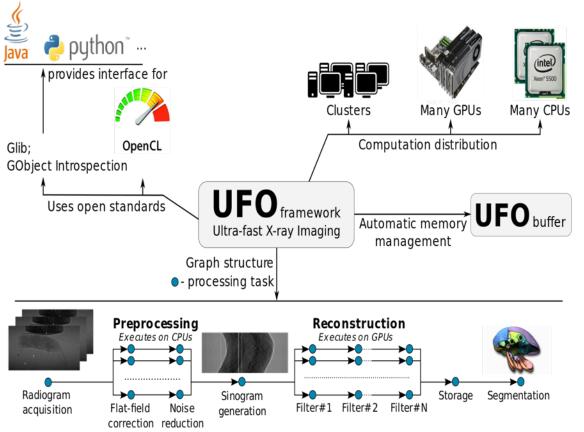
Institute for Data Processing and Electronics



KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Scientific computing with GPUs

- Single core age ended -> parallel programming is required!
- GPUs are fast, cheap and scalable (up to 4 in a PC)
- TeraFLOP applications: e.g. tomography (2TFLOP/GB)



Ultra-fast X-ray imaging – "UFO Framework"

Goals:

- Pipelined processing of data streams
- (Re-)use of optimized algorithms
- Automatic scheduling
 - **CPUs, GPUs**, ...
- Integration in
 - Control system
 - Analysis tools
- Easy to use for
 - Users, Admins, Developers

Vogelgesang M et al, Proc HPCC-ICESS (2012) 824-829 Vogelgesang M et al, Proc ICALEPS (2013)

http://ufo.kit.edu

Custom DAQ Electronics

UFO DAQ Platform

Embedded FPGA for online data analysis ⇒ open design ⇒ library of

standard IP cores

Modular sensor interface => rapid development for new sensors

Applications:

- Phase contrast tomography P05/07
- KAPTURE electron beam characterization, ATP see M Caselle

High-throughput link (PCIe, <15GB/s) => streaming to GPU for processing

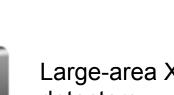
Enabling HPC technologies for DAQ systems

Helmholtz-Zentrum

Geesthacht

But why online processing?

- Improve data quality
 - Optimize experimental setup
- Reduce data size
 - Apply pre-analysis steps, when possible
- Design new experiments
 - Automatic control



Minerva, Max Planck Institute for Gravitational Physics

Data-Intense Applications in Photon Science and Machine Physics

- Facilities
 - PETRA3
 - XFEL
 - Acc. Test Platform ATP: ANKA, FLUTE, ..
- Data-intense methods
 - Tomography
 - Scattering
 - Electron Beam monitoring
 - **.**...
- Detectors
 - Commercial cameras
 - X-ray detectors
 - Fast digitizers

Large-area X-ray detectors (e.g. Pilatus 6M)

High-speed cameras (e.g. pco.dymax)

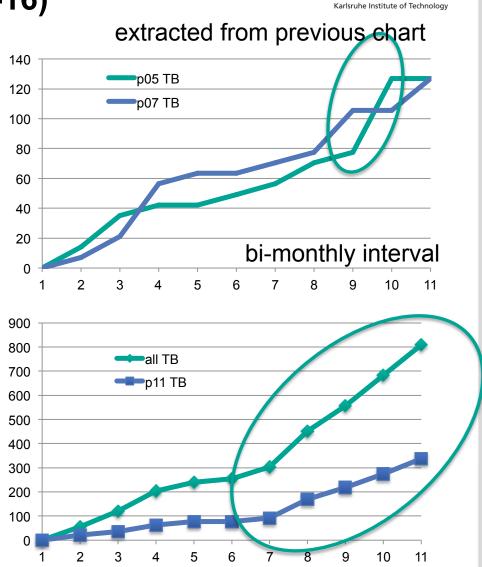
Custom detectors (e.g. KAPTURE)

Karlsruhe Institute of Technology

Detector Rates in Photon Science and Machine Physics

Device	Rate MB/s	Rate TB/8h	Ch.	ADC bit	Rate Hz	Beamline
"CL Base"	255	7				e.g. pco.dymax
"CL Full"	800	22	4M	16	100	e.g. pco.edge
Pilatus 6M	223	6	6M	20	10-12,5	P11
UFO Camera	1125	31	20M	12	30	P05/07
KAPTURE	3815	105	4	12+4	500M	ANKA
KAPTURE2	15259	419	4-8	12+4	1G	
KALYPSO2	4883	134	512	14	5MHz	

- CL = Camera Link
- All devices without compression


"Real-life" Data Rates (2015-16)

PETRA3

- Tomography (P05/P07)
 - Mean 75 TB/a
 - Max 300 TB/a (eq. 75h op)
- Imaging / Diffraction (P11)
 - Mean 200 TB/a
 - Max 370 TB/a (eq. 500h op)

ANKA

- Tomography (TopoTomo)
 - Mean 40 TB/a (eq. 42h op.)
- KAPTURE
 - Mean 10 TB/a (eq. 1h op.)

Beamline Automation

- Robots for sample changers
- Sample identification (e.g. by QR code)
- Camera revolver, lenses
- Advanced control systems



Tomography Services for Morphology

- ANKA domain expert collects samples
 - Check of sample quality
- Measurement at ANKA
 - Beamtime 6 days (e.g. Nov 2015)
 - Up to 300 samples from 14 scientists
 - Methods: Radiology, Tomography, Cine-Tomography
 - Samples: in alcohol, dried, amber, ...
 - More than 90% of the samples are usefull
 - Interested scientists might join
- Datasets are automatically transferred to processing storage
 - Analysis by users

Quantitative Studies of Fly Puparia

- Digitalization of 30 million-year-old phosphatized insects
- Little-known fossil type!

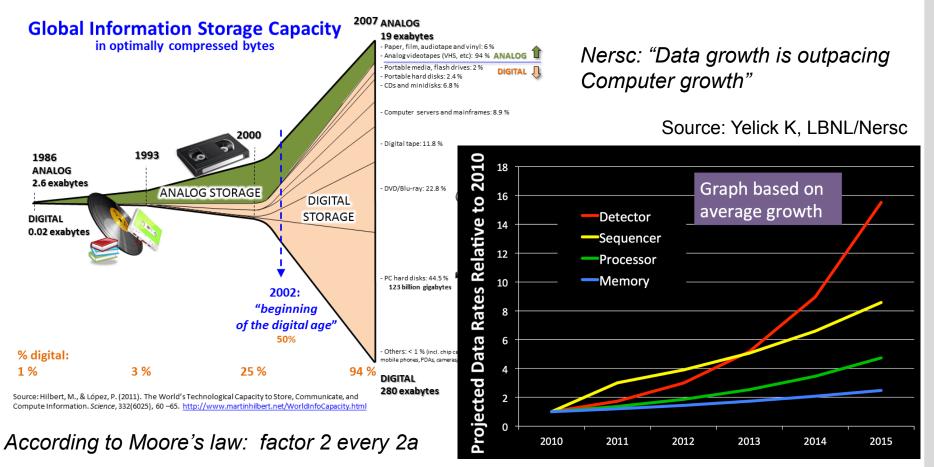
Scanning:

- February 2016: 29 puparia
- August 2016: 1379 puparia

size ~3 mm

Result: 1408 scanned puparia! Datasets: ~60 TB

Automation enables quantitative studies



Digital transformation and large datasets

 "Big datasets are so large or complex that traditional data processing applications are inadequate" (Wikipedia)

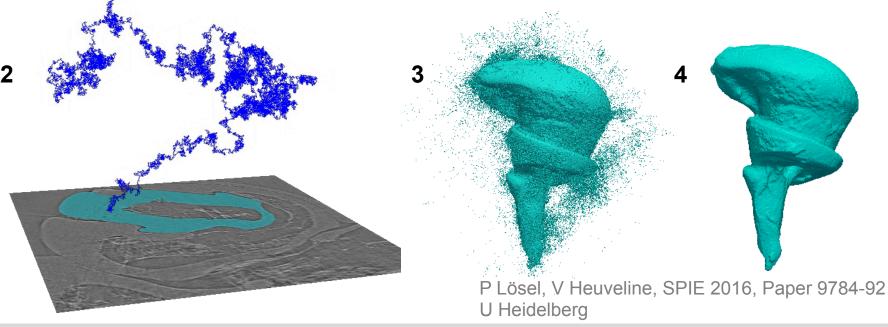
Data Challenges:

1. Reduce Data as Early as Possible

- Adopt pre-processing, reconstruction to detector rates
- Avoid user interaction, define workflows
- Make use of trigger to filter relevant data
- Assess quality of data
- Heterogeneous FGPA-GPU computing is very powerful
- But tasks are often domain specific
- Solution: Modularity and frameworks with core functionality

2. Adopt Analysis for Large Datasets

- Huge amount of data
 - User often do not have the necessary resources (computers, memory, software) available in order to process the datasets at their home institutions
- Data analysis is still very time-consuming
 - Segmentation of tomographic datasets is usually done manually
- Solutions:
 - Establish analysis centers at the facilities
 - Involve more scientists by collaborative analysis and open data
 - Re-evaluate known algorithms with recent computing performance



Verbundforschung:

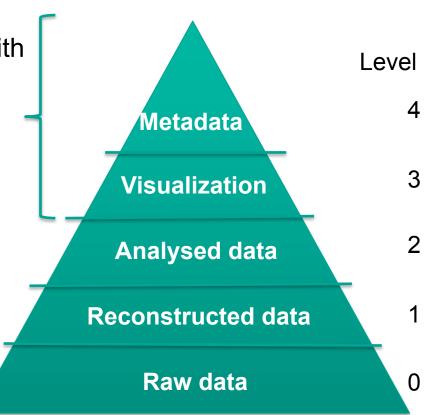
3D Segmentation Algorithms

- Algorithm requires performance of GPUs
 - 1. Preprocess: Label the segments in some well chosen slices.
 - 2. Start a great number of weighted random walks at each labeled pixel.
 - 3. The number of hits by random walks which were started in the same segment leads to the probability that a voxel belongs to this segment.
 - 4. Post processing using Active Contour Method in 3D.

casual interpolation

BIOMEDISA interpolation

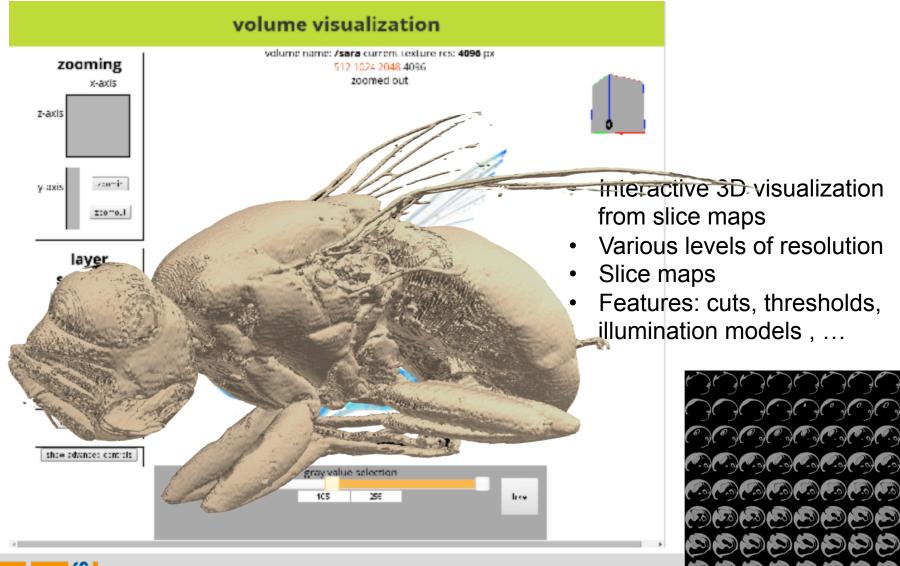
19


3. Hierarchical Organization of Datasets

Long-term archive have long access times

- Organize large dataset in levels with decreasing size is needed
- Only metadata is available in data catalogs

Solution:


- Extend classical metadata by visualization data
- Develop 3D-visualization for data catalogs

Web Data Catalog with 3D Visualization

ARD-ST3 Annual Workshop, DESY Zeuthen 19.-21.7.2017

Institute for

Conclusion

- Data rates will reach 1PB/a soon
- Exascale data center will come

Still datasets need to be analyzed

- Online data assessment
- Improve Analysis methods for large datasets

Data management matters

- Scalable data formats with extended metadata
 + scalable visualization
- Dependencies between datasets
 e.g. higher resolution data should replace older

Solutions are often domain specific and will not appear automatically by generic "Big Data" research

