

Search for Neutral SUSY Higgs Bosons Decaying to Tau Leptons at 13 TeV

Alexei Raspereza

SFB B9 Meeting, April 3rd 2017

H(125) Boson and New Phyisics

- H(125) is discovered (significance>5 σ) in three bosonic and one fermionic decay mode
 - $H \rightarrow ZZ \rightarrow 4\ell, H \rightarrow WW \rightarrow 2\ell + 2\nu, H \rightarrow \gamma\gamma$
 - $H \rightarrow \tau \tau$ (ATLAS+CMS combination)
 - and in two production modes
 - gg→H
 - VBF (ATLAS+CMS combination)
- Measured properties are consistent with expectations for the SM Higgs boson
- Is H(125) the SM Higgs boson?
- Several ways to address this question
 - Search for deviations from the SM predictions (high precision measurements of the H(125) properties)
 - Search for BSM decays (invisible, LVF, etc) of H(125)
 - Search for new scalar bosons (topic of this talk)

Higgs Sector in MSSM

Higgs Sector in MSSM → Two Higgs Doublet Model (2HDM)

$$\Phi_{1} = \begin{pmatrix} \Phi_{1}^{+} \\ \Phi_{1}^{0} \end{pmatrix} \qquad \Phi_{2} = \begin{pmatrix} \Phi_{2}^{+} \\ \Phi_{2}^{0} \end{pmatrix}$$
$$\left\langle \Phi_{1} \right\rangle = \begin{pmatrix} 0 \\ \nu_{1} \end{pmatrix} \qquad \left\langle \Phi_{2} \right\rangle = \begin{pmatrix} 0 \\ \nu_{2} \end{pmatrix}$$

5 physical states: h, H, A, H^{\pm}

 $\tan\beta = \nu_1/\nu_2$

 $\begin{pmatrix} \mathbf{h} \\ \mathbf{H} \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \phi_1^0 \\ \phi_2^0 \end{pmatrix}$

• Type II 2HDM

- Φ₁ couples to down-type
 quarks and charged leptons
- Φ_2 couples to up-type quarks

	h	Н	А
W^+W^-	$\sin(\beta - \alpha)$	$\cos(\beta - \alpha)$	0
ZZ	$\sin(\beta - \alpha)$	$\cos(\beta - \alpha)$	0
uū (up-type quarks)	$\cos \alpha / \sin \beta$	$\sin lpha / \sin eta$	\coteta
$d\bar{d}$ (down-type quarks)	$\sin lpha / \cos eta$	$\cos lpha / \cos eta$	aneta
$\ell \overline{\ell}$ (charged leptons)	$\sin lpha / \cos eta$	$\cos \alpha / \cos \beta$	aneta

Decoupling Limit of MSSM

- Unconstrained MSSM has more than 100 free model parameters
 - → incomprehensible phenomenological variety of models
 - Current measurements of H(125) state are consistent with decoupling limit of MSSM
 - $m_A \gg m_Z, m_A \approx m_H$
 - $\cos(eta-lpha)
 ightarrow 0\,$: H decouples from W and Z
 - $\sin(\beta \alpha) \rightarrow 1$: h has properties of H_{SM} (e.g. H(125) state)
- high tanβ →

٠

- production rates are enhanced (bb Φ , gg $\rightarrow \Phi$)
- decays to bb and ττ dominate even at high masses

- Decays to bottom-type fermions are the most sensitive probes of MSSM parameter domains with large $m_{{}_{\!A}}$ and high tanß

Recap of Run I Searches for MSSM Higgs bosons

- Searches performed in many channels during Run I:
 - $H \rightarrow bb, H \rightarrow WW, H \rightarrow ZZ, H \rightarrow \tau\tau, H \rightarrow \mu\mu, H \rightarrow hh, A \rightarrow Zh, H^{\pm} \rightarrow \tau\nu, ...$
- Interpretations in MSSM scan in m_A-tanβ plane of:
 - mh^{mod+}
 - · hMSSM
- Sensitivity to H→hh, A→Zh at low tanβ

MSSM H $\rightarrow \tau\tau$ search at CMS with early Run II data

- Previous MSSM H/A $\rightarrow \tau\tau$ search results : CMS HIG-16-006
 - analyzed 2.3 fb⁻¹ of data collected at 13 TeV in 2015
 - interpretations
 - ★ model independent : limits on $\sigma(bb\phi/gg \rightarrow \phi) \times BR(\phi \rightarrow \tau\tau)$
 - \star model dependent : (tan β , m_A) limits within MSSM benchmarks
 - surpassed Run I results at high mass

Identification of Hadronic Tau decays in CMS

Decay mode	Resonance	$Mass [MeV/c^2]$	Branching ratio
$\tau^- \to \pi^- \nu_{\tau}$	-	135	10.9%
$ au^- ightarrow \pi^- \pi^0 u_ au$	ho	770	25.5%
$\tau^- \to \pi^- \pi^0 \pi^0 \nu_{\tau}$	a_1	1200	10.8%
$\tau^- \to \pi^- \pi^+ \pi^- \nu_\tau$	a_1	1200	9.8%
$\tau^- \to \pi^- \pi^+ \pi^- \pi^0 \nu_\tau$	a_1	1200	4.5%
Total			59.2%
Other hadronic modes			5.6%

- Neutral pions are reconstructed from photons and electrons that deposit energy in ECAL \rightarrow energy deposits combined in [η , ϕ]-strips
- Taus are reconstructed as combination of tracks and strips

 Invariant mass of tracks + strips should be compatible with the mass of intermediate resonance

MVA-based tau Id

BDT based discrimination against jets

- decay length information (track impact parameters, secondary vertex)
- isolation information (p_{τ} sum of neutral objects and tracks within isolation cone)
- Number of photons and electrons within isolation and signal cones

Tau ID measurement for high p_{T} taus

• Tau ID efficiency of high p_T taus essential for heavy resonance searches : $X^0 \rightarrow \tau^+ \tau^-, X^{\pm} \rightarrow \tau^{\pm} \nu_{\tau}$

•

- high p_{τ} tau-leptons can be accessed in the W* $\rightarrow \tau + \nu$ sample
 - → highly virtual W* production with little hadronic activity

Signatures : single jet (tau), balanced with MET

Tau ID measurement for high tau p_{τ}

- data/siumlation τ Id scale factors are derived from fits of m_{τ} (lepton,MET) in selected samples of W* $\rightarrow \mu\nu$ and W* $\rightarrow \tau\nu$ events
 - W* $\rightarrow \mu \nu$ sample is used to constrain fiducial yield of W* production with $m_{_{W^*}} \geq 200~GeV$
- scale factors are found to be consistent with unity within measurement errors of 10-15%

MSSM $\Phi \rightarrow \tau \tau$ search at 13 TeV

 Exploited production mechanisms

Exploited di-tau decay modes

 $\mu\tau_{\rm h}, e\tau_{\rm h}, \tau_{\rm h}\tau_{\rm h}, e\mu,$

- new τ_h identification using lifetime information and dynamic strip reconstruction of neutral pions (TAU-16-002 PAS)
- Event categorization
 - no b-jets ($p_{_{T}} > 20 \text{ GeV}$, $|\eta| < 2.4$)
 - \geq 1 b-jet (p_T > 20 GeV, |η| < 2.4)
 - < 2 jets ($p_{_{T}}$ > 30 GeV, $|\eta|$ < 4.7)
- Major backgrounds : Drell-Yan, TTBar, VV, W+Jets, QCD
- Signal extracted using total transverse mass of leptons and E_{T} (mis)

Selection

- Triggers :
 - single lepton (e/µ) triggers with relatively low thresholds in the e+ τ and µ+ τ channels
 - e+μ cross triggers with asymmetric thresholds in the e+μ channel
 - double hadronic-tau trigger in the $\tau + \tau$ channel
- Offline selection of opposite sign isolated di-lepton events
- Additional topological cuts involving missing E_T related variables to further suppress backgrounds

Additional topological cuts

 $\begin{array}{l} \mu \tau_{\rm h}, \ {\rm e} \tau_{\rm h}: \\ {\rm cut \ on \ }_{{\rm T}} \ {\rm to \ reduced \ } {\rm W} + {\rm Jets} \\ \hline m_{\rm T} = \sqrt{2 p_{\rm T} E_{\rm T}^{\rm miss} (1 - \cos \Delta \phi)} \\ \mu \tau_{\rm h}: \ m_{\rm T} < 40 \ {\rm GeV} \\ {\rm e} \tau_{\rm h}: \ m_{\rm T} < 50 \ {\rm GeV} \end{array}$

$\begin{array}{l} \mathbf{e}\mu:\\ \mathbf{cut} \ \mathbf{on} \ \mathbf{D}_{\zeta} \ \mathbf{to} \ \mathbf{reduced} \ \mathbf{TTBar} \ \mathbf{and} \ \mathbf{VV}\\ D_{\zeta} = P_{\zeta} - 1.85P_{\zeta}^{vis}\\ \text{with} \ P_{\zeta} = (\vec{P}_{T,1}^{vis} + \vec{P}_{T,2}^{vis} + \vec{P}_{T}^{mis}) \frac{\vec{\zeta}}{|\vec{\zeta}|}\\ \text{and} \ P_{\zeta}^{vis} = (\vec{P}_{T,1}^{vis} + \vec{P}_{T,2}^{vis}) \frac{\vec{\zeta}}{|\vec{\zeta}|}\\ \end{array}$

Choice of final discriminant

- Previous analysis used transverse mass of fully reconstructed di-tau system
- This variable is found to be sub-optimal in the $e+\mu$ channel

eµ channel differs from other channels ($e\tau_h$, $\mu\tau_h$, $\tau_h\tau_h$) in that tt+jets is by far dominant background to high mass Higgs signals

Direction of MET vector in tt+jets events not "aligned" with e and μ

- SVfit likelihood typically broad in tt+jets events, as direction of MET vector does not match expected signal topology for signal of any mass
- → Broad likelihood function can cause high mass tails in SVfit reconstruction
- Use total transverse mass (variable introduced by ATLAS in their MSSM H $\rightarrow \tau\tau$ search)

$$m_{\rm T}^{\rm tot} = \sqrt{m_{\rm T}^2({\rm e},{\rm MET}) + m_{\rm T}^2(\mu,{\rm MET}) + m_{\rm T}^2({\rm e},\mu)}$$

Choice of final discriminant

 Much better signal/background separation at high masses in e+µ channel is attained by using total transverse mass instead of transverse mass of reconstructed di-tau system

Choice of final discriminant

- With m_{τ}^{tot} as the final discriminant $e+\mu$ channel outperforms $e+\tau_{h}^{}$ and $\mu+\tau_{h}^{}$ at high masses ($m_{\phi}^{} > 2$ TeV)

Background Estimation Techniques

Control regions

Backgrounds constrained by control regions:

Postfit distributions of m₁^{tot} (no btag category)

Postfit distributions of m_r^{tot} (btag category)

Model Independent Interpretation

- No evidence of signal found
- Model independent result : constraints on signal production cross section times BR (search for narrow Φ → ττ resonance) set limits on each process (other process is profiled)

Model independent interpretation

Limits in 2D plane

$$\sigma(\mathrm{gg} \to \phi) \mathcal{B}(\phi \to \tau \tau)$$
 vs. $\sigma(\mathrm{bb}\phi) \mathcal{B}(\phi \to \tau \tau)$

Model Dependent Interpretation

- limits in (m_Δ,tanβ) plane
- m_h-mod+ and hMSSM benchmarks : post-discovery scenarios accommodating h(125) state

Comparison with previous results

Summary

- Search for neutral SUSY Higgs bosons is performed with 12.9 fb⁻¹ of 2016 data
 - no indication of signal yet
 - results of the search are interpreted in a model independent and model dependent ways
 - limits on x BR for two major productions mechanisms : bbΦ and gg→Φ
 - limits on tanß as a function of $m_{\scriptscriptstyle A}$ within benchmark scenarios
- Analysis performed on full 2016 dataset (L ~ 36 fb⁻¹) is being finalized
 - Plan to release updated results at the time scale of EPS'17 Conference